Share This Article:

A Supersonic Plasma Jet Source for Controlled and Efficient Thin Film Deposition

Abstract Full-Text HTML Download Download as PDF (Size:946KB) PP. 1626-1638
DOI: 10.4236/jmp.2012.330200    4,342 Downloads   6,817 Views   Citations

ABSTRACT

A novel plasma source suitable for controllable nanostructured thin film deposition processes is proposed. It exploits the separation of the process in two distinct phases. First precursor dissociation and radical formation is performed in a dense oxidizing plasma. Then nucleation and aggregation of molecular clusters occur during the expansion into vacuum of a supersonic jet. This allows a superior control of cluster size and energy in the process of film growth. Characterization of the plasma state and source performances in precursor dissociation have been investigated. The performances of this new Plasma Assisted Supersonic Jet Deposition technique were demonstrated using organic compounds of titanium to obtain TiO2 thin nanostructured films.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Biganzoli, F. Fumagalli, F. Fonzo, R. Barni and C. Riccardi, "A Supersonic Plasma Jet Source for Controlled and Efficient Thin Film Deposition," Journal of Modern Physics, Vol. 3 No. 10A, 2012, pp. 1626-1638. doi: 10.4236/jmp.2012.330200.

References

[1] K. J. Seshan, “Handbook of Thin-Film Deposition Processes and Techniques,” W. Andrew Publishing, Noyes, 2002.
[2] S. Ramanathan, “Thin Film Metal-Oxides”, Springer, Heidelberg, 2010. doi:10.1007/978-1-4419-0664-9
[3] M. Graetzel, “Sol-Gel Processed TiO2 Films for Photovoltaic Applications,” Sol-Gel Science and Technology, Vol. 22, No. 1-2, 2001, pp. 7-13. doi:10.1023/A:1011273700573
[4] J. Aguado-Serrano and M. L. Rojas-Cervantes, “Titania Aerogels: Influence of Synthesis Parameters on Textural, Crystalline and Surface Acid Properties,” Microporous and Mesoporous Materials, Vol. 88, No. 1-3, 2006, pp. 205-213. doi:10.1016/j.micromeso.2005.09.011
[5] X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou and X. Z. Fu, “Photocatalitic Activity of a Hierarchically Macro/Mesoporous Titania,” Langmuir, Vol. 21, No. 6, 2005, pp. 2552-2559. doi:10.1021/la047979c
[6] M. Suzuki, T. Ito and Y. Taga, “Photocatalysis of Sculptured Thin Films of TiO2,” Applied Physics Letters, Vol. 78, No. 25, 2001, pp. 3968-3970. doi:10.1063/1.1380730
[7] S. M. Waita, B. O. Aduda, J. M. Mwabora, C. G. Granqvist, S. E. Lindquist, G. A. Niklasson, A. Hafeldt and G. Boschloo, “Electron Transport and Recombination in Dye Sensitized Solar Cells Fabricated from Obliquely Sputter Deposited and Thermally Annealed TiO2 Films,” Journal of Electroanalytical Chemistry, Vol. 605, No. 2, 2007, pp. 151-156. doi:10.1016/j.jelechem.2007.04.001
[8] J. Rodriguez, M. Gomez, J. Lu, E. Olsson and C. G. Granqvist, “Reactively Sputter-Deposited Titanium Oxide Coatings with Parallel Penniform Microstructure,” Advanced Materials, Vol. 12, No. 5, 2000, pp. 341-343. doi:10.1002/(SICI)1521-4095(200003)12:5<341::AID-ADMA341>3.0.CO;2-0
[9] F. Di Fonzo, C. S. Casari, V. Russo, M. F. Brunella, A. Li Bassi and C. E. Bottani, “Hierarchically Organized Nanostructured TiO2 for Photocatalysis Applications,” Nanotechnology, Vol. 20, No. 1, 2009, pp. 1-7.
[10] A. Goossens, E. L. Maloney and J. Schoonman, “GasPhase Synthesis of Nanostructured Anatase TiO2,” Chemical Vapor Deposition, Vol. 4, No. 3, 1998, pp. 109-114. doi:10.1002/(SICI)1521-3862(199805)04:03<109::AID-CVDE109>3.0.CO;2-U
[11] L. Mangolini, E. Thimsen and U. Kortshagen, “High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals,” Nanoletters, Vol. 5, No. 4, 2005, pp. 655-659. doi:10.1021/nl050066y
[12] H. Nizard, M. L. Kosinova, N. I. Fainer, Y. M. Rumyantsev, B. M. Ayupov and Y. V. Shubin, “Deposition of TiO2 from TTIP by Plasma and Remote Plasma Enhanced CVD,” Surface and Coatings Technology, Vol. 202, No. 17, 2008, pp. 4076-4085. doi:10.1016/j.surfcoat.2008.02.023
[13] J. Hopwood, “Review of Inductively Coupled Plasmas for Plasma Processing,” Plasma Sources Science and Technology, Vol. 1, No. 2, 1992, pp. 109-116. doi:10.1088/0963-0252/1/2/006
[14] M. A. Lieberman and A. J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” Wiley, New York, 1998.
[15] R. Siliprandi, S. Zanini, E. Grimoldi, F. Fumagalli, R. Barni and C. Riccardi, “Atmospheric Pressure Plasma Discharge for Polysiloxane Thin Films Deposition and Comparison with Low Pressure Process,” Plasma Chemistry and Plasma Processing, Vol. 31, No. 2, 2011, pp. 353-372. doi:10.1007/s11090-011-9286-3
[16] S. F. Durrant, N. C. Da Cruz, E. C. Rangel and M. A. Bica de Moraes, “Plasma Enhanced Chemical Vapor Deposition of Titanium (IV) Ethoxide-Oxygen-Helium Mixtures,” Thin Solid Films, Vol. 516, No. 15, 2008, pp. 4940-4945. doi:10.1016/j.tsf.2007.09.036
[17] C. Riccardi, I. Biganzoli and R. Barni, “Experimental Characterization of a New Plasma Source for Controlled Deposition of Thin Films,” Europhysics Conference Abstracts, Vol. 36F, 2012, pp. P5/141.1-4.
[18] P. H. Oosthuizen and W. E. Carscallen, “Compressible Fluid Flow,” McGraw-Hill, London, 1997.
[19] J. T. Gudmmundsson, T. Kimura and M. A. Lieberman, “Experimental Studies of O2/Ar Plasma in a Planar Inductive Discharge,” Plasma Sources Science and Technology, Vol. 8, No. 1, 1999, pp. 22-30. doi:10.1088/0963-0252/8/1/003
[20] J. Kowalski, A. Sobczyk-Guzenda, H. Szymanowski and M. Gazicki-Lipman, “Optical Properties and Morphology of PECVD Deposited Titanium Dioxide Films,” Journal of Achievements in Materials and Manufacturing Engineering, Vol. 37, No. 2, 2009, pp. 298-303.
[21] K. Jousten, “Handbook of Vacuum Technology,” Wiley, New York, 2008.
[22] J. M. Smith, “Introduction to Chemical Engineering Thermodynamics,” McGraw-Hill, New York, 1987.
[23] F. Sharipov and D. V. Kozak, “Rarefied Gas Flow through a Thin Slit at an Arbitrary Pressure Ratio,” European Journal of Mechanics B, Vol. 30, No. 5, 2011, pp. 543-549. doi:10.1016/j.euromechflu.2011.05.004
[24] L. Holland, W. Steckelmacher and J. Yarwood, “Vacuum Manual,” E.&F.N. Spon Ltd., London, 1974. doi:10.1007/978-94-011-8120-4
[25] H. R. Murphy and D. R. Miller, “Effects of Nozzle Geometry on Kinetics in Free-Jet Expansions,” Journal of Physical Chemistry, Vol. 88, No. 20, 1984, pp. 4474-4478. doi:10.1021/j150664a005
[26] H. Ashkenas and F. Sherman, “Structure and Utilization of Supersonic Free Jets in Low Density Wind Tunnels”, in “Rarefied Gasdynamics 4,” Academic Press, New York, 1966.
[27] C. Raju and J. Kurian, “Effect of Slit Aspect Ratio on Free Jet Properties,” Vacuum, Vol. 46, No. 4, 1995, pp. 389-395. doi:10.1016/0042-207X(94)00085-9
[28] Y. Otobe, H. Kashimura, S. Matsuo, T. Setoguchi and H. D. Kim, “Influence of Nozzle Geometry on the Near-Field Structure of a Highly Underexpanded Sonic Jet,” Journal of Fluids and Structures, Vol. 24, No. 2, 2008, pp. 281-293. doi:10.1016/j.jfluidstructs.2007.07.003
[29] R. A. Siliprandi, H. E. Roman, R. Barni and C. Riccardi, “Characterization of the Streamer Regime in Dielectric Barrier Discharges,” Journal of Applied Physics, Vol. 104, No. 6, 2008, pp. 1-9. doi:10.1063/1.2978184
[30] V. M. Donnelly, “Plasma Electron Temperatures and Electron Energy Distributions Measured by Trace Rare Gases OES,” Journal of Physics D, Vol. 37, No. 19, 2004, pp. R217-R236. doi:10.1088/0022-3727/37/19/R01
[31] U. Kortshagen, N. D. Gibson and J. E. Lawler, “On the E-H Mode Transition in RF Inductive Discharges,” Journal of Physics D, Vol. 29, No. 5, 1996, pp. 1224-1236.
[32] F. Croccolo, A. Quintini, R. Barni and C. Riccardi, “Transition between E-Mode and H-Mode in a Cylindrical ICP Reactor,” High Temperature Material Processes, Vol. 14, No. 1-2, 2010, pp. 119-127.
[33] C. M. Tsai, A. P. Lee and C. S. Kou, “Characteristics of Heating Mode Transitions in a RF Inductively Coupled Plasma,” Journal of Physics D, Vol. 39, No. 17, 2006, pp. 3821-3825.
[34] J. E. Chilton, J. B. Boffard, R. S. Schappe and C. C. Lin, “Measurement of Electron-Impact Excitation into the 3p54p Levels of Argon Using Fourier-Transform Spectroscopy,” Physical Review A, Vol. 57, No. 1, 1998, pp. 267-277.
[35] A. Dasgupta, M. Blaha and J. L. Giuliani, “Electron-Impact Excitation from the Ground and the Metastable Levels of Ar I,” Physical Review A, Vol. 61, No. 1, 2000, pp. 1-10.
[36] Y. Ralchenko, A. Kramida, J. Reader and NIST-ASD Team, “NIST Atomic Spectra Database,” 2011. http://physics.nist.gov/asd
[37] J. Vlcek, “Collisional-Radiative Model Applicable to Argon Discharges over a Wide Range of Conditions,” Journal of Physics D, Vol. 22, No. 5, 1989, pp. 623-643.
[38] D. Mariotti, Y. Shimizu, T. Sasaki and N. Koshizaki, “Method to Determine Argon Metastable Number Density and Plasma Electron Temperature from Spectral Emission Originating from Four 4p Argon Levels,” Applied Physics Letters, Vol. 89, No. 20, 2006, pp. 1-4
[39] F. Croccolo, R. Barni, S. Zanini, A. Palvarini and C. Riccardi, “Material Surface Modifications with an Inductive Plasma,” Journal of Physics: Conference Series, Vol. 100, No. 6, 2008, pp. 1-3.
[40] R. Barni, S. Zanini and C. Riccardi, “Diagnostics of RF Reactive Plasmas,” Vacuum, Vol. 82, No. 2, 2007, pp. 217-219.
[41] R. W. B. Pearse and A. G. Gaydon, “The Identification of Molecular Spectra,” Wiley, New York, 1976.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.