Efficacy and long-term evaluation of intramyocardial injection of autologous CD34-enriched PBMSC in old myocardial infarction
José Luis Aceves, Abel Archundia, Araceli Páez, Rafael Vilchis, Elvira Varela, Emma Rodriguez, Guillermo Diaz, Lourdes Flores-Luna, Martha Alvarado, Manuel Lopez H., Luis Felipe Montaño, Felipe Masso
Center of Population Health Research, National Institute of Public Health, Mexico City, Mexico.
Department of Cardiovascular Surgery, National Medic Center 20 de Noviembre ISSSTE, Mexico City, Mexico.
Department of Cellular Physiology, National Institute of Cardiology “Ignacio Chavez”, Mexico City, Mexico.
Department of Hematology, National Medic Center 20 de Noviembre ISSSTE, Mexico City, Mexico.
Immunobiology Laboratory, Department of Cell and Tissue Biology, School of Medicine UNAM, Mexico City, Mexico.
DOI: 10.4236/wjcd.2012.24044   PDF    HTML     3,735 Downloads   6,077 Views   Citations

Abstract

Aims: We have shown that autologous transplant of CD34+-enriched peripheral-blood mononuclear cells (PBMSC) could restore depressed myocardial function, and sustain adequate myocardial function 12 months after surgery in patients with old (>one year-old) myocardial infarction. Our aim is to report the long-term morbidity and mortality efficacy of this procedure. Methods and results: Seventy patients with an old anteroseptal myocardial infarction were followed for 2 to 7 years, 35 had a revascularization procedure and received an intra-myocardial injection of autologous CD34+-enriched PBMSC (8 × 108 mononuclear cells/ml including 3 × 107 CD34+ cells/ml)(Group A). Group B patients only had the revascularization. Abnormal pre-surgical values of LVEF (33.2% ± 4.8%), LVDV (178 ± 13.7 ml), LVSV (120 ± 16 m), LVDD (58.9 ± 3.84 mm), E and A waves without contractility in infarction area in group A patients improved to approximate normal values (50% ± 3% for LVEF; 90 ± 9.3 ml for LVDV; 80 ± 9.9 ml for LVSV; 55.3 ± 3 mm for LVDD; 5.2 ± 0.5 cm/s for E wave and 4.18 ± 0.3 cm/s for A wave) 1 year after the procedure and have remained unaltered for all the follow-up period. All the patients remain alive. Only seven patients have been readmitted to the hospital for non-myocardial related events. Group B only 11 patients continued alive to 5 years after surgery and LEVF never increased more than 6%, all of them with many hospitalizations (n ≥ 10) by heart failure events. Conclusion: Intramyocardial injection of CD34+ highly enriched PBSC represent an encouraging alternative for patients with severely scarred and dysfunctional myocardium.

Share and Cite:

Aceves, J. , Archundia, A. , Páez, A. , Vilchis, R. , Varela, E. , Rodriguez, E. , Diaz, G. , Flores-Luna, L. , Alvarado, M. , H., M. , Montaño, L. and Masso, F. (2012) Efficacy and long-term evaluation of intramyocardial injection of autologous CD34-enriched PBMSC in old myocardial infarction. World Journal of Cardiovascular Diseases, 2, 283-290. doi: 10.4236/wjcd.2012.24044.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Assmus, B., Schachinger, V., Teupe, C., Britten, M., Leh-mann, R., Dobert, N., Grunwald, F., Aicher, A., Urbich, C., Martin, H., Hoelzer, D., Dimmeler, S. and Zeiher, A.M. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106, 3009-3017. Hdoi:10.1161/01.CIR.0000043246.74879.CD
[2] Strauer, B.E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R.V., Kogler, G. and Wernet, P. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106, 1913-1918. Hdoi:10.1161/01.CIR.0000034046.87607.1C
[3] Kang, H.J., Kim, H.S., Koo, B.K., Park, K.W., Lee, H.Y., Sohn, D.W., Oh, B.H., Park, Y.B. and Kim, H.S. (2008) Effects of stem cell therapy with G-CSF on coronary artery after drug-eluting stent implantation in patients with acute myocardial infarction. Heart, 94, 604-609. Hdoi:10.1136/hrt.2007.128348
[4] Singh, S., Arora, R., Handa, K., Khraisat, A., Nagajothi, N., Molnar, J. and Khosla, S. (2009) Stem cells improve left ventricular function in acute myocardial infarction. Clinical Cardiology, 32, 176-180. Hdoi:10.1002/clc.20470
[5] Martin-Rendon, E., Brunskill, S., Hyde, C., Stanworth, S., Mathur, A. and Watt, S. (2008) Autologous bone marrow stem cells to treat acute myocardial infarction: A systematic review. European Heart Journal, 29, 1807-1818. Hdoi:10.1093/eurheartj/ehn220
[6] Mathur, A. and Martin, J.F. (2004) Stem cells and repair of the heart. Lancet, 364, 183-192. Hdoi:10.1016/S0140-6736(04)16632-4
[7] Tse, H.F., Kwong, Y.L., Chan, J.K., Lo, G., Ho, C.L. and Lau, C.P. (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 361, 47-49. Hdoi:10.1016/S0140-6736(03)12111-3
[8] Chang, S.A., Kang, H.J., Lee, H.Y., Kim, K.H., Hur, J., Han, K.S., Park, Y.B. and Kim, H.S. (2009) Peripheral blood stem cell mobilization by granulocyte-colony stimulating factor in patients with acute and old myocardial infarction for intracoronary cell infusion. Heart, 95, 1326- 1330. Hdoi:10.1136/hrt.2008.148429
[9] Archundia, A., Aceves, J.L., Lopez-Hernandez, M., Al- varado, M., Rodriguez, E., Diaz Quiroz, G., Paez, A., Rojas, F.M. and Monta?o, L.F. (2005) Direct cardiac injection of G-CSF mobilized bone-marrow stem-cells improves ventricular function in old myocardial infarction. Life Sciences, 78, 279-283. Hdoi:10.1016/j.lfs.2005.04.080
[10] Lévesque, J.P., Hendy, J., Winkler, I.G., Takamatsu, Y. and Simmons, P.J. (2003) Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Experimental Hematology, 31, 109-117. Hdoi:10.1016/S0301-472X(02)01028-7
[11] Mathieu, M., Bartunek, J., El Oumeiri, B., Touibri, K., Hadad, I., Thoma, P., Metens, T., Da Costa, A.M., Mah-moudabady, M., Egrise, D., Blocklet, D., Mazouz, N., Naejje, R., Heyndrickx, G. and McEntee, K. (2009) Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. The Journal of Thoracic and Cardiovascular Surgery, 138, 646- 653. Hdoi:10.1016/j.
[12] Kang, H.J., Lee, H.Y., Na, S.H., Chang, S.A., Park, K.W., Kim, H.K., Kim, S.Y., Chang, H.J., Lee, W., Kang, W.J., Koo, B.K., Kim, Y.J., Lee, D.S., Sohn, D.W., Han, K.S., Oh, B.H., Park, Y.B. and Kim, H.S. (2006) Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: The MAGIC Cell-3-DES randomized, controlled trial
[13] Brunskill, S.J., Hyde, C.J., Doree, C.J., Watt, S.M. and Martin-Rendon, E. (2009) Route of delivery and baseline left ventricular ejection fraction, key factors of bone- marrow-derived cell therapy for ischaemic heart disease. European Journal of Heart Failure, 11, 887-896. Hdoi:10.1093/eurjhf/hfp101
[14] Suarez de Lezo, J., Herrera, C., Pan, M., Romero, M., Pavlovic, D., Segura, J., Sanchez, J., Ojeda, S. and Torres, A. (2007) Regenerative therapy in patients with a revas- cularized acute anterior myocardial infarction and depressed ventricular function. Revista Espa?ola de Cardiología, 60, 357-365.
[15] Herrmann, J.L., Wang, Y., Abarbanell, A.M., Well, B.R., Tan, J. and Meldrum, D.R. (2010) Precondiotioning mesen-chymal stem cells with transforming growth factoralpha improves mesenchymal stem cell-mediated cardio-protection. Shock, 33, 24-30. Hdoi:10.1097/SHK.0b013e3181b7d137
[16] Sanganalmath, S.K., Abdel-Latif, A., Bolli, R., Xuan, Y.T. and Dawn, B. (2011) Hematopoietic cytokines for cardiac repair: Mobilization of bone marrow cells and beyond. Basic Research in Cardiology, 106, 709-733. Hdoi:10.1007/s00395-011-0183-y
[17] Burchfield, J.S., Iwasaki, M., Koyanagi, M., Urbich, C., Rosenthal, N., Zelher, A.M. and Dimmeler, S. (2008) Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circulation Research 103, 201-211. doi:10.1161/CIRCRESAHA.108.178475
[18] Kanellakis, P., Slater, N.J., Du, X.J., Bobik, A. and Curtis, D.J. (2006) Granulocyte colony-stimulating factor and stem cell factor improve endogenous repair after myo- cardial infarction. Cardiovascular Research, 70, 117-125. Hdoi:10.1016/j.cardiores.2006.01.005
[19] Bartunek, J., Dimmeler, S., Drexler, H., Fernandez-Aviles, F., Galinanes, M., Janssens, S., Martin, J., Mathur, A., Menasche, P., Priori, S., Strauer, B., Tendera, M., Wijns, W. and Zeiher, A. (2006) Task force of the European Society of Cardiology. The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. European Heart Journal, 27, 1338-1340. Hdoi:10.1093/eurheartj/ehi793
[20] Yeh, E.T., Zhang, S., Wu, H.D., Korbling, M., Willerson, J.T. and Estrov, Z. (2003) Transdifferentiation of human peripheral blood CD34-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 108, 2070-2073. Hdoi:10.1161/01.CIR.0000099501.52718.70
[21] Balsam, L.B., Wagers, A.J., Christensen, J.L., Kofidis, T., Weissman, I.L. and Robbins, R.C. (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668-673. Hdoi:10.1038/nature02460
[22] Murry, C.E., Soonpaa, M.H., Reinecke, H., Nakajima, H., Nakajima, H.O., Rubart, M., Pasumarthi, K.B., Virag, J.I., Bartelmez, S.H., Poppa, V., Bradford, G., Dowell, J.D., Williams, D.A. and Field, L.J. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664-668. Hdoi:10.1038/nature02446
[23] Menasche, P. (2004) Embryonic stem cells pace the heart. Nature Biotechnology, 22, 1237-1238. Hdoi:10.1038/nbt1004-1237
[24] Jackson, K.A., Majka, S.M., Wang, H., Pocius, J., Hart- ley, C.J., Majesky, M.W., Entman, M.L., Michael, L.H., Hirschi, K.K. and Goodell, M.A. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107, 1395-1402. Hdoi:10.1172/JCI12150
[25] Castello, S., Podesta, M., Menditto, V.G., Ibatici, A., Pitto, A., Figari, O., Scarpati, D., Magrassi, L., Bacigalupo, A., Piaggio, G. and Frassoni, F. (2004) Intra-bone marrow injection of bone marrow and cord blood cells: An alternative way of transplantation associated with a higher seeding efficiency. Experimental Hematology, 32, 782-787. Hdoi:10.1016/j.exphem.2004.05.026
[26] Kastrup, J., Jorgensen, E., Ruck, A., Tagil, K., Glogar, D., Ruzyllo, W., Botker, H.E., Dudek, D., Drvota, V., Hesse, B., Thuesen, L., Blomberg, P., Gyongyosi, M. and Sylven, C. (2005) Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. Journal of the American College of Cardiology, 45, 982-988. Hdoi:10.1016/j.jacc.2004.12.068
[27] HMias, CH., HLairez, OH., HTrouche, EH., HRoncalli, JH., HCalise, DH., HSeguelas, M.HH., HOrdener, CH., HPiercecchi-Marti, M.DH., HAuge, NH., HSalvayre, A.NH., HBourin, PH., HParini, AH. and HCussac, DH., (2009) Mesenchymal stem cells promote matrix metal- loproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells, 27, 2734-2743. Hdoi:10.1002/stem.169
[28] Mozid, A.M., Arnous, S., Sammut, E.C. and Mathur, A. (2011) Stem cell therapy for heart diseases. British Medical Bulletin, 98, 143-159. Hdoi:10.1093/bmb/ldr014
[29] Strauer, B.E., Schannwell, C.M. and Brehm, M. (2009) Therapeutic potentials of stem cells in cardiac diseases. Minerva Cardioangiologica, 57, 249-267.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.