Growth of Gallium Oxide Nanowires by Pulsed Laser Deposition

Abstract

We report on the synthesis of gallium oxide nanowires by pulsed laser deposition using a gold catalyst. In the vapor-liquid-solid process, gold thickness was the crucial parameter for deciding the morphology of nanowires. In the case of 1 nm thick gold, homogeneous nanowire growth was confirmed at temperatures of 700°C to 850°C. Transmission electron microscopy and selected area electron diffraction measurements showed that the nanowires were polycrystalline. In the cathode luminescence spectra, UV, blue, green and red emission peaks were observed, as reported in previous studies. As growth temperature was increased, the relative intensities of blue, green, and red emissions decreased. Thermal annealing treatments were effective in decreasing the blue, green and red emission peaks, suggesting that these emission peaks were associated with oxygen vacancies.

Share and Cite:

H. Yamahara, M. Seki and H. Tabata, "Growth of Gallium Oxide Nanowires by Pulsed Laser Deposition," Journal of Crystallization Process and Technology, Vol. 2 No. 4, 2012, pp. 125-129. doi: 10.4236/jcpt.2012.24017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Yanagida, K. Nagashima, H. Tanaka and T. Kawai, “Mechanism of Catalyst Diffusion on Magnesium Oxide Nanowire Growth,” Applied Physics Letters, Vol. 91, No. 6, 2007, Article No. 061502. doi:10.1063/1.2768202
[2] J. Maeng, W. Park, M. Choe, G. Jo, Y. H. Kahng and T. Lee, “Transient Drain Current Characteristics of ZnO Nanowire Field Effect Transistors,” Applied Physics Letters, Vol. 95, No. 12, 2009, Article No. 123101. doi:10.1063/1.3232203
[3] A. Qurashi, E. M. El-Maghraby, T. Yamazaki and T. Kikuta, “Catalyst Supported Growth of In2O3 Nanostructures and Their Hydrogen Gas Sensing Properties,” Sensors and Actuators B, Vol. 147, No. 1, 2010, pp. 48-54. doi:10.1016/j.snb.2010.03.024
[4] K. Nagashima, T. Yanagida, A. Klamchuen, M. Kanai, K. Oka, S. Seki and T. Kawai, “Interfacial Efect on Metal/ Oxide Nanowire Junctions,” Applied Physics Letters, Vol. 96, No. 7, 2010, Article No. 073110. doi:10.1063/1.3318257
[5] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano and H. Hosono, “Field-Induced Current Modulation in Epitaxial Film of Deep-Ultraviolet Transparent Oxide Semiconductor Ga2O3,” Applied Physics Letters, Vol. 88, No. 9, 2006, Article No. 092106. doi:10.1063/1.2179373
[6] N. D. Cuong, Y. W. Park and S. G. Yoon, “Microstructural and Electrical Properties of Ga2O3 Nanowires Grown at Various Temperatures by Vapor-Liquid-Solid Technique,” Sensors and Actuators B, Vol. 140, No. 1 2009, pp. 240-244. doi:10.1016/j.snb.2009.04.020
[7] M. Orita, H. Ohta, M. Hirano and H. Hosono, “DeepUltraviolet Transparent Conductive β-Ga2O3 Thin Films,” Applied Physics Letters, Vol. 77, No. 25, 2000, Article No. 4166. doi:10.1063/1.1330559
[8] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang and S. Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Communications, Vol. 109, No. 11, 1999, pp. 677-682. doi:10.1016/S0038-1098(99)00015-0
[9] W. Q. Han, P. Kohler-Redlich, F. Ernst and M. Rühle, “Growth and Microstructure of Ga2O3 Nanorods,” Solid State Communications, Vol. 115, No. 10, 2000, pp. 527529. doi:10.1016/S0038-1098(00)00238-6
[10] H. J. Chun, Y. S. Choi, S. Y. Bae, H. W. Seo, S. J. Hong, J. Park and H. Yang, “Controlled Structure of Gallium Oxide Nanowires,” Journal of Physical Chemistry B, Vol. 107, No. 34, 2003, pp. 9042-9046. doi:10.1021/jp034728o
[11] H. W. Kim and N. H. Kim, “Synthesis of β-Ga2O3 Nanowires by an MOCVD Approach,” Applied Physics A, Vol. 81, No. 4, 2005, pp. 763-765. doi:10.1007/s00339-004-2982-6
[12] M. Orita, H. Hiramatsu, H. Ohta, M. Hirano and H. Hosono, “Preparation of Highly Conductive, Deep Ultraviolet Transparent β-Ga2O3 Thin Film at Low Deposition Temperatures,” Thin Solid Films, Vol. 411, No. 1, 2002, pp. 134-139. doi:10.1016/S0040-6090(02)00202-X,
[13] H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, I. Tanaka and S. Sonoda, “Room Temperature Ferromagnetism in Mn-doped γ-Ga2O3 with Spinel Structure,” Applied Physics Letters, Vol. 89, No. 18, 2006. Article No. 181903. doi:10.1063/1.2369541
[14] F. Shi, S. Zhang and C. Xue, “Influence of Annealing Time on Microstructure of One-dimensional Ga2O3 Nanorods,” Journal of Alloys and Compounds, Vol. 498, No. 1, 2010, pp. 77-80. doi:10.1016/j.jallcom.2010.03.106
[15] J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu and J. Xu, “Growth and Spectral Characterization of β-Ga2O3 Single Crystals,” Journal of Physics and Chemistry of Solids, Vol. 67, No. 12, 2006, pp. 2448-2451. doi:10.1016/j.jpcs.2006.06.025
[16] T. Harwig, F. Kellendonk and S. Slappendel, “The Ultraviolet Luminescence of β-Galliumsesquioxide,” Journal of Physics and Chemistry of Solids, Vol. 39, No. 6, 1977, pp. 675-680. doi:10.1016/0022-3697(78)90183-X
[17] L. Binet and D. Gourier, “Origin of the Blue Luminescence of β-Ga2O3,” Journal of Physics and Chemistry of Solids,, Vol. 59, No. 8, 1998, pp. 1241-1249. doi:10.1016/S0022-3697(98)00047-X
[18] E. G. Víllora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara and T. Fukuda, “Optical Spectroscopy Study on β-Ga2O3,” Japanese Journal of Applied Physics, Vol. 41, No. 6A, 2002, pp. L622-L625. doi:10.1143/JJAP.41.L622
[19] Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang and D. P. Yu, “Luminescence Emission Originating from Nitrogen Doping of β-Ga2O3 Nanowires,” Physical Review B, Vol. 69, No. 7, 2004, Article No. 075304. doi: 10.1103/PhysRevB.69.075304.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.