Growth, Crystal Structure and Characterization of a New Single Crystal: Lithium Sodium Acid Phthalate (LiNaP), for Third Order Nonlinear Optical Applications

Abstract

A new alkali metallo-organic single crystal of Lithium Sodium Acid Phthlate (LiNaP) complex has been synthesized from aqueous solution in the equimolar ratio 3:1:2. Transparent and bulk single crystals of dimension 9 × 4 ×2 mm3 have been grown from the conventional slow-cooling technique. The crystal structure of the compound has been solved from single crystal X-ray diffraction. The compound 2[C8H4O3]4-Li3+Na+ crystallizes in triclinic system with a space group of Pī having cell dimensions a = 7.5451(2) ? b = 9.8422(3) ? c = 25.2209(7) ? α = 80.299(2); β = 89.204(2); γ = 82.7770(10). FTIR measurement was carried out fo? LiNaP to study the vibrational structure of the compound. The various functional groups present in the molecule and the role of H-bonds in stabilizing the crystal structure of the compound have been explained. Optical absorption properties were studied for the grown crystal using UV-Vis-NIR spectrum. Thermal measurements were carried out for LiNaP to determine the thermal strength as well as to ascertain the hydrated nature of the crystal. Third order nonliner optical studies have also studied by Z-scan techniques. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results of all studies have been discussed in detail.

Share and Cite:

B. Sivakumar, S. Raj, G. Kumar and R. Mohan, "Growth, Crystal Structure and Characterization of a New Single Crystal: Lithium Sodium Acid Phthalate (LiNaP), for Third Order Nonlinear Optical Applications," Journal of Crystallization Process and Technology, Vol. 2 No. 4, 2012, pp. 130-136. doi: 10.4236/jcpt.2012.24018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A.Smith, “The Crystal Structures of a Series of Salts of Phthalic Acid. II. The Crystal Structure of Sodium Acid Phthalate Hemihydrate,” Acta Crystallographica Section B, Vol. 51, 1975, pp. 2345-2347. doi:10.1107/S0567740875007546
[2] H. Kuppers, “Structure of Lithium Phthalate Hemitrihydrate,” Acta Crystallographica Section C, Vol. 44, No. 12, 1988, pp. 2093-2095. doi:10.1107/S0108270188008935
[3] G. Adiwidjaja and H. Kuppers, “Lithium Hydrogen Phthalate-Methanol,” Acta Crystallographica Section B, Vol. 34, 1978, pp. 2003-2005. doi:10.1107/S0567740878007190
[4] H. Kuppers, “Lithium Hydrogen Phthalate Monohydrate,” Acta Crystallographica Section B, Vol. 34, 1978, pp. 3763-3765. doi:10.1107/S0567740878012121
[5] J. S. Loring, M. Karlsson, W. R. Faweett and W. H. Casey, “Infrared Spectra of Phthalic Acid, the Hydrogen Phthalate Ion, and the Phthalate Ion in Aqueous Solution,” Spectrochimica Acta Part A, Vol. 57, No. 8, 2001, pp. 1635-1642. doi:10.1016/S1386-1425(01)00391-2
[6] D. S. Chemla and J. Zyss, “Nonlinear Optical Properties of Organic Molecules and Crystals,” Academic Press, New York, 1987.
[7] N. Kejalakshmy and K. Srinivasan, “Growth, Optical and Electro-Optical Characterisations of Potassium Hydrogen Phthalate Crystals Doped with Fe3+ and Cr3+ Ions,” Optical Materials. Vol. 27, No. 3, 2004, pp. 389-394. doi:10.1016/j.optmat.2004.09.005
[8] J. G. Qin , D. Y. Liu , C. Y. Dai, C. T. Chen, B. C. Wu, C. L. Yang and C. M. Zhan, “Influence of the Molecular Configuration on Second-Order Nonlinear Optical Properties of Coordination Compounds,” Coordination Chemistry Reviews, Vol. 188, No. 1, 1999, pp. 23-34. doi:10.1016/S0010-8545(98)00182-9
[9] P. G. Barber and J. T. Petty, “Use of Moments of Momentum to Predict the Crystal Habit in Potassium Hydrogen Phthalate,” Journal of Crystal Growth, Vol. 100, No. 1-2, 1990, pp. 185-188. doi:10.1016/0022-0248(90)90621-Q
[10] B. Orel, D. Hadzi and F. Carassi, “Infrared and Raman Spectra of Potassium Hydrogen Phthalate,” Spectrochimica Acta A: Molecular Spectroscopy, Vol. 31, No. 2, 1975, pp. 169-182. doi:10.1016/0584-8539(75)80228-5
[11] B. N. Mavrin, M. V. Koldaeva, R. M. Zakalyukin and T. N. Turskaya, “Raman Spectra of Potassium, Rubidium, and Thallium Hydrogen Phthalates,” Optika i Spektroskopiya, Vol. 100, No. 6, 2006, pp. 862-868. doi:10.1134/S0030400X06060099
[12] N. Balamurugan, M. Lenin and P. Ramasamy, “Growth of Potassium Acid Phthalate Crystals by Sankaranarayanan-Ramasamy (SR) Method and Its Optical Characterization,” Materials Letters, Vol. 61, No. 8-9, 2007, pp. 1896-1898. doi:10.1016/j.matlet.2006.07.184
[13] A. Senthil, P. Ramasamy and G. Bhagavannarayana, “Synthesis, Growth, Optical, Dielectric and Thermal Studies of Lithium Hydrogen Phthalate Dihydrate Crystals,” Journal of Crystal Growth, Vol. 311, No. 9, 2009, pp. 2696-2701. doi:10.1016/j.jcrysgro.2009.02.036
[14] A. Senthil and P. Ramasamy, “Unidirectional Growth of <001> Sodium Acid Phthalate Single Crystal by Sankaranarayanan-Ramasamy (SR) Method,” Journal of Crystal Growth, Vol. 311, No. 23-24, 2009, pp. 4720-4724. doi:10.1016/j.jcrysgro.2009.09.014
[15] H. Retajczak, “Book of Abstracts,” Krakow, 2000, p. 21.
[16] H. Kuppers, F. Takusagawa and T. F. Koetzle, “Neutron Diffraction Study of Lithium Hydrogen Phthalate Monohydrate: A Material with Two Very Short Intramolecular O???H???O Hydrogen Bonds,” Journal of Chemical Physics, Vol. 82, No. 12, 1985, pp. 5636-5647. doi:10.1063/1.448550
[17] A. K. Karnal, A. Saxena, H. L. Bhat, V. K. Wadhawan and T. P. S. Nathan, “A Novel Seed-Isolation Technique during the Processing of Solutions,” Journal of Crystal Growth, Vol. 289, No. 2, 2006, pp. 617-620. doi:10.1016/j.jcrysgro.2005.11.101
[18] W. Clegg and L. Russo, “Synthesis and Structures of Alkali Metal Complexes of Isophthalic Acid: The Interplay of Organic Supramolecular Interactions and Flexible Metal Coordination as Structure-Directing Factors,” Crystal Growth & Design, Vol. 9, No. 2, 2009, pp. 11581163. doi:10.1021/cg800991t
[19] Bruker APEX2, SADABS, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, 2004.
[20] L. J. Farrugia, “ORTEP-3 for Windows—A Version of ORTEP-III with a Graphical User Interface (GUI),” Journal of Applied Crystallography, Vol. 30, 1997, pp. 565-568. doi:10.1107/S0021889897003117
[21] G. M. Sheldrick, “SHELXL97,” University of Gottingen, Gottingen, 1997.
[22] A. C. T. North, D. C. Phillips and F. S. Mathews, “A Semi-Empirical Method of Absorption Correction,” Acta Crystallographica Section A, Vol. 24, No. 3, 1968, pp. 351-353. doi:10.1107/S0567739468000707
[23] J. L. Bredas, C. Adant, P. Tackx and A. Persoons, “Thirdorder Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects,” Chemical Reviews, Vol. 94, No. 1, 1994, pp. 243-278. doi:10.1021/cr00025a008
[24] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” Journal of Quantum Electronics, Vol. 26, No. 4, 1990, pp. 760-769. doi:10.1109/3.53394
[25] M. Sheik-Bahae, A. A. Said and E. W. VanStryland, “High-Sensitivity, Single-Beam n2 Measurements,” Optics Letters, Vol. 14, No. 17, 1989, pp. 955-957. doi:10.1364/OL.14.000955
[26] E. W. Vanstryland and M. Sheik-Bahae, “Characterisation Techniques and Tabulation for Organic Nonlinear Materials,” In: M. G. Kuzyk and C. W. Dirk, Eds., Marcel Dekker Inc., New York, 1998, pp. 655-692.
[27] A. A. Said, M. Sheik-Bahae, T. H. Wei, D.J. Hagan, J. Wang, J. Young and V. Stryland, “Determination of Bound Electronic and Free-Carrier Nonlinearities in ZnSe, GaAs, CdTe and ZnTe,” Journal of the Optical Society of America B, Vol. 9, No. 3, 1992, pp. 405-414. doi:10.1364/JOSAB.9.000405

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.