Flow Injection Analysis of Hydrazine in the Aqueous Streams of Purex Process by Liquid Chromatography System Coupled with UV-Visible Detector

Abstract

Present study describes the development of a rapid, sensitive and selective flow injection analysis of hydrazine in the aqueous streams of purex process by liquid chromatography system coupled with UV-Visible detector. The method is based on the formation of yellow coloured azine complex by reaction of hydrazine with para-dimethy laminobenzaldehyde (pDMAB). The formed yellow coloured complex is stable in acidic medium and has a maximum absorption at 460 nm. The presence of uranium in hydrazine solution is not interfering in the analysis. Under optimum condition, the absorption intensity linearly increased with the concentration of hydrazine in the range from 0.05-10 mg?L–1 with a correlation coefficient of R2=0.9999 (n=7). The experimental detection limit is 0.05mgL–1. The sampling frequency is 15 samples h–1 and the relative standard deviation was 2.1% for 0.05 mg?L–1. This method is suitable for automatic and continuous analysis and successfully applied to determine the concentration of hydrazine in the aqueous stream of nuclear fuel reprocessing.

Share and Cite:

P. Velavendan, S. Pandey, N. Pandey, U. Mudali and R. Natarajan, "Flow Injection Analysis of Hydrazine in the Aqueous Streams of Purex Process by Liquid Chromatography System Coupled with UV-Visible Detector," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 2 No. 3, 2012, pp. 156-160. doi: 10.4236/jasmi.2012.23025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. F. Audrieth and B. A. Ogg, “The Chemistry of Hydrazines,” John Wiley & Sons, Inc. New York, 1951, p. 225.
[2] N. S. B. Singh, S. V. Mohan and G. R. Balasubramanian, “*,” Radiochimica Acta, Vol. 72, No. , 1996, p. 93.
[3] P. Biddle and J. H. Miles, “*,” Journal of Inorganic and Nuclear Chemistry, Vol. 30, No. , 1968, pp. *.
[4] J. C. Mailen and O. K. Tallent, “*,” Report Conference 821056, Vol. 8, 1982, pp. *.
[5] D. G. Karraker, “*,” USDOE Report DP-1666, 1983.
[6] R. Kaveeshwar and V. K. Gupta, “A New Spectrophotometric Method for the Determination of Hydrazine in Environmental Samples,” Fresenius Journal of Analytical Chemistry, Vol. 344, No. 3, 1992, pp. 114-117. doi:10.1007/BF00325125
[7] O. A. Sire and J. Burno, “*,” Talanta, Vol. 47, 1979, p. 26.
[8] S. Wang, L. Du, A. Zhang and D. Liu, “*,” Mikrochimica Acta, Vol. 134, 2000, p. 167.
[9] A. A. Ensafi and B. Naderi, “Flow Injection Determination of Hydrazine with Fluorimetric Detection,” Talanta, Vol. 47, No. 3, 1998, pp. 645-649. doi:10.1016/S0039-9140(98)00113-1
[10] M. L. Balconi, F. Sigon, M. Borgarello, R. Ferraroli and F. Realini, “Flow-Injection Analysis for Power Plants: Evaluation of Detectors for the Determination of Control Parameters in Conditioned Water-Steam Cycles,” Analytica Chimica Acta, Vol. 234, 1990, pp. 167-173. doi:10.1016/S0003-2670(00)83552-7
[11] M. Yang and H. L. Li, “Determination of Trace Hydrazine by Differential Pulse Voltammetry Using Magnetic Microspheres,” Talanta, Vol. 55, No. 3, 2001, pp. 479-484. doi:10.1016/S0039-9140(01)00456-8
[12] J. Wang and Z. Taha, “Catalytic-Adsorptive Stripping Voltammetric Measurements of Hydrazines,” Talanta, Vol. 35, No. 12, 1988, pp. 965-968. doi:10.1016/0039-9140(88)80229-7
[13] S. Ikeda, H. Sutake and Y. Kohri, “Flow Injection Analysis with Amperometric Detector Utilizing the Redox Reaction of Iodate Ion,” Chemistry Letters, Vol. 13, No. 6, 1984, pp. 873-876. doi:10.1246/cl.1984.873
[14] E. Athanasio-Malaki and M. K. Koupparis, “Kinetic Study of the Determination of Hydrazines, Isoniazid and Sodium Azide by Monitoring Their Reactions with 1-Fluoro-2,4-dinitrobenzene, by Means of a Fluoride-Selective Electrode,” Talanta, Vol. 36, No. 4, 1989, pp. 431-436. doi:10.1016/0039-9140(89)80224-3
[15] J. Huamin, H. Weiying and W. Erkany, “Amperometric Flow-Injection Analysis of Hydrazine by Electrocatalytic Oxidation at Cobalt Tetraphenylporphyrin Modified Electrode with Heat Treatment,” Talanta, Vol. 39, No. 1, 1992, pp. 45-50. doi:10.1016/0039-9140(92)80048-I
[16] J. R. Stetter, K. F. Blurton, A. M. Valentine and K. A. Tellefsen, “The Electrochemical Oxidation of Hydrazine and Methylhydrazine on Gold: Application to Gas Monitoring,” Journal of the Electrochemical Society, Vol. 125, No. 11, 1978, pp. 1804-1807. doi:10.1149/1.2131299
[17] S. Ganesh, F. Khan, M. K. Ahmed and S. K. Pandey, “Potentiometric Determination of Free Acidity in Presence of Hydrolysable Ions and a Sequential Determination of Hydrazine,” Talanta, Vol. 85, No. 2, 2011, pp. 958-963. doi:10.1016/j.talanta.2011.05.001
[18] W. R. McBride, R. A. Heny and S. Skolnik, “Potentiometric Analytical Methods for Hydrazino Compounds. Sydrazine Sulfate,” Analytical Chemistry, Vol. 23, No. 6, 1951. pp. 890-893. doi:10.1021/ac60054a016
[19] V. Vatsala, V. Bansal, D. K. Tuili, M. M. Rai, M. M. Jian, S. P. Srivastava and A. K. Bhatnagar, “Gas Chromatographic Determination of Residual Hydrazine and Morpholine in Boiler Feed Water and Steam Condensates,” Chromatorgraphia, Vol. 38, No. 7-8, 1994, pp. 456-460. doi:10.1007/BF02269836
[20] N. M. Ratcliffe, “Polypyrrole-Based Sensor for Hydrazine and Ammonia,” Analytica Chimistry Acta, Vol. 239, 1990, pp. 257-262. doi:10.1016/S0003-2670(00)83859-3
[21] H. A. Safavi, F. Sedaghatpour and M. R. H. Nezhad, “Indirect Simultaneous Kinetic Determination of Semicarbazide and Hydrazine in Micellar Media by H-Point Standard Addition Method,” Talanta, Vol. 59, No. 1, 2003, pp. 147-153. doi:10.1016/S0039-9140(02)00465-4
[22] A. A. Ensafi and B. Naderi, “Flow-Injection Spectrophotometric Determination of Hydrazine,” Microchemical Journal, Vol. 56, No. 3, 1997, pp. 269-275. doi:10.1006/mchj.1996.1403
[23] A. M. Haji Shabani, S. Dadfarnia and K. Dehghan, “Indirect Spectrophotometric Determination of Trace Quantities of Hydrazine,” Bulletin of the Korean Chemical Society, Vol. 25, No. 2, 2004, pp. 213-215. doi:10.5012/bkcs.2004.25.2.213
[24] J. Mendham, R. C. Denney, J. D. Barnes and M. Thomas, “Vogel’s Text Book of Quantitative Chemical Analysis,” 6th Edition, Prentice Hall, Upper Saddle River 2002, p. 441.
[25] W. Davies and W. Gray, “A Rapid and Specific Titrimetric Method for the Precise Determination of Uranium Using Iron (II) Sulphate as Reductant,” Talanta, Vol. 11, No. 8, 1964, pp. 1203-1211. doi:10.1016/0039-9140(64)80171-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.