The STM Images of Pt (111) ()R30°/CO Surface by DFT Calculations

Abstract

In this work we have performed total-energy calculations of the chemisorption properties and STM images of Pt (111) ( × )R30°/CO Surface; STM Image; ChemisorptionR30°/CO surface by using the density functional theory (DFT) and the projector-augmented wave (PAW) method. The calculations show that carbon monoxide molecule (CO) adsorbs on FCC site in the Pt (111) ( × )R30°/ surface is energetically favored by the GGA-PBE XC-functional, this is in agreement with most of the theoretical calculations which is using different XC-functional at the most. However, these results strongly conflicted with the existing experiments. Actually the calculated work function for the FCC adsorption is quite different from the experiments while the atop one is in good agreement with experiments. We speculate that the atop adsorption for (CO is favorable for the adsorption case at the most. Furthermore, we have calculated the scanning tunneling microscopy (STM) images for both adsorption geometries and suggest that there should be existed remarkable differences in the STM images. The present work provides a faithful criterion accounting for the local surface geometry in Pt (111) ( × )R30°/CO surface from surface work functions and STM images instead of totalenergy calculations.

Share and Cite:

H. Chen, "The STM Images of Pt (111) ()R30°/CO Surface by DFT Calculations," Advances in Materials Physics and Chemistry, Vol. 2 No. 3, 2012, pp. 99-109. doi: 10.4236/ampc.2012.23017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Frantzeskakis, S. Pons, A. Crepaldi, H. Brune, K. Kern, and M. Grioni, 2011. Agcoverage-dependent symmetry of the electronic states of the Pt (111)-Ag-Bi interface: The ARPES view of a structural transition. Physical Review B, 84(24): 245443. doi:10.1103/PhysRevB.81.241416
[2] Jan-Henrik Fisch-er-Wolfarth, Jason A. Farmer, J. Manuel Flores-Camacho, Alexander Genest, Ilya V. Yudanov, Notker R?sch, Charles T. Campbell, Swetlana Schauermann, 1and Hans-Joachim Freund, 2010. Particle-size dependent heats of adsorption of CO on supported Pd nanoparticles as measured with a single-crystal microcalorimeter. Physical Review B, 81(24):241416. doi:10.1103/PhysRevB.84.245443
[3] R. Chen, Z. Chen, B. Mac, X. Hao, N. Kapur, J. Hyun, K. Cho, B. Shan, 2012. CO adsorption on Pt (111) and Pd (111) surfaces: A first-principles based lattice gas Monte-Carlo study. Computational and Theoretical Chemistry, 987 :77-83. doi:10.1016/j.comptc.2011.07.015
[4] J. Steckel, A. Eichler, J. Hafner, 2003. CO adsorption on the CO-precovered Pt (111) surface characterized by density-functional theory. Physical Review B, 68 (8):085416. doi:10.1103/PhysRevB.68.085416
[5] F. M. Leibsle, S. S. Dhesi, S. D. Barrett, and A. W. Robinson, 1994. STM observations of Cu(100)?c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure. Surface Science, 317 (3) :309-320. doi:10.1016/0039-6028(94)90287-9
[6] T. M. Parker, L. K. Wilson, N. G. Condon, and F. M. Leibsle, 1997. Epitaxy controlled by self-assembled nanometer-scale structures. Physical Review B, 56 (11):6458-6461. doi:10.1103/PhysRevB.56.6458
[7] H. Steininger, S. Lehwald, and H. Ibach, 1982. On the adsorption of CO on Pt (111). Surface Science, 123 (2-3) :264-282. doi:10.1016/0039-6028(82)90328-4
[8] J. P. Biberian and M.A. Van Hove, 1984. A new model for CO ordering at high coverages on low index metal surfaces: A correlation between LEED, HREELS and IRS: II. CO adsorbed on fcc (111) and hep (0001) surfaces. Surface Science, 138(2-3):361-389. doi:10.1016/0039-6028(84)90253-X
[9] H. Hopster and H. Ibach, 1978. Adsorption of CO on Pt (111) and Pt 6(111) × (111) studied by high resolution electron energy loss spectroscopy and thermal desorption spectroscopy. Surface Science, 77(1):109-117. doi:10.1016/0039-6028(78)90164-4
[10] G. S. Blackman, M. L. Xu, D. F. Ogletree, M. A. Van Hove, and G. A. Somorjai, 1988. Mix of Molecular Adsorption Sites Detected for Disordered CO on Pt (111) by Diffuse Low-Energy Electron Diffraction. Physical Review Letters, 61(20):2352-2355. doi:10.1103/PhysRevLett.61.2352
[11] B. E. Hayden and A. M. Bradshaw, 1983. The adsorption of CO on Pt (111) studied by infrared reflection-Absortion spectroscopy. Surface Science, 125(3):787-802. doi:10.1016/S0039-6028(83)80060-0
[12] F. A. Pedersen and M. P. Andersson, 2007. CO adsorption energies on metals with correction for high coordination adsorption sites-A density functional study. Surface Science, 601(7):1747-1753. doi:10.1016/j.susc.2007.01.052
[13] K. Doll, 2004. CO adsorption on the Pt (111) surface: a comparison of a gradient corrected functional and a hybrid functional. Surface Science, 573(3):464-473. doi:10.1016/j.susc.2004.10.015
[14] P. E. Bl?chl, 1994. Projector augmented-wave method. Physical Review B, 50 (24):17953–17979 . doi:10.1103/PhysRevB.50.17953
[15] J. P. Perdew, K. Burke, and M. Ernzerhof, 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18):3865-3868. doi:10.1103/PhysRevLett.77.3865
[16] J. P. Perdew, K. Burke, and M. Ernzerhof, 1997. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Re-view Letters, 78 (7):1396-1396.doi:10.1103/PhysRevLett.78.1396
[17] G. Kresse and J. Furthermüller, 1996. Efficiency of abinitio total energy calculations for metalsand semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15-50. doi:10.1016/0927-0256(96)00008-0
[18] G. Kresse and J. Joubert, 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (3):1758–1775.doi:10.1103/PhysRevB.59.1758
[19] D. Vanderbilt, 1994. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41 (11):7892–7895. doi:10.1103/PhysRevB.41.7892
[20] Thibault Charpentier, 2011. The PAW/GIPAW approach for computing NMR parameters: A new dimension added to NMR study of solids. Solid State Nuclear Magnetic Resonance, 40(1):1–20. doi:10.1016/j.ssnmr.2011.04.006
[21] H. J. Monkhorst and J. D. Pack, 1976. Special points for Brillouin-zone integrations. Physical Review B, 13 (12):5188–5192. doi:10.1103/PhysRevB.13.5188
[22] E. Frantzeskakis, S. Pons, A. Crepaldi, H. Brune, K. Kern, and M. Grioni, 2011. Ag-coverage-dependent symmetry of the electronic states of the Pt (111)-Ag-Bi interface: The ARPES view of a structural transition. Physical Review B, 84(24): 245443. doi:10.1103/PhysRevB.84.245443
[23] M. C. Payne, M. O. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Re-views of Modern Physics, 64(4):1045–1097.doi:10.1103/RevModPhys.64.1045
[24] Charles Kittel, 1976. Introduction to Solid State Physics (5th) . John Wiley & Sons, Inc., New York. p.31-31.
[25] D. L. Adams, H. B. Nielsen, and M. A. Van Hove, 1979. Quantitative analysis of low-energy-electron diffraction: Application to Pt (111). Physical Review B, 20(12):4789–4806. doi:10.1103/PhysRevB.20.4789
[26] N. Materer, U. Starke, A. Barbieri, R. D?ll, K. Heinz, M. A. van Hove, and G. A. Somorjai, 1995. Reliability of detailed LEED structural analyses: Pt (111) and Pt (111)-p(2×2)-O. Surface Science, 325(3):207-222. doi:10.1016/0039-6028(94)00703-9
[27] R. Feder, H. Pleyer, P. Baner, and N. Mueller, 1981. Spin polarization in low-energy electron diffraction: Surface analysis of Pt (111). Surface Science, 109(2):419-434. doi:10.1016/0039-6028(81)90497-0
[28] K. Hayek, H. Glassl, A. Gutmann, and H. Lenohard, 1985. A LEED analysis of the structure of Pt (111) ( × )R30?-S. Surface Science, 152-153(1):419-425. doi:10.1016/0039-6028(85)90172-4
[29] ?. Crljen, P. Lazi?, D. ?ok?evic′, and R. Brako, 2003. Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu. Physical Review B, 68(19):195411. doi:10.1103/PhysRevB.68.195411
[30] Xiang-Ming Tao, Ming-Qiu Tan, Xin-Xin Zhao, Wen-Bin Chen, Xin Chen, Xue-Fu Shang, 2006. A density-functional study on the atomic geometry and adsorption of the Cu(100) c(2×2)/N Surface. Surface Science, 600(17) :3419-3426.doi:10.1016/j.susc.2006.06.032
[31] M. Methfessel, D. Hennig, and M.Scheffler, 1991. Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. Physical Review B, 46(8):4816-4829. doi:10.1103/PhysRevB.46.4816
[32] A. D. Becke, 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6):3098-3100. doi:10.1103/PhysRevA.38.3098
[33] Jorge Kohanoff, 2006. Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods. Cambridge University Press, Cambridge. p 77-84. doi.org/10.1017/CBO9780511755613
[34] R. Colle and D. Salvetti, 1975. Approximate calculation of the correlation energy for the closed shells. Theor. Chim. Acta, 37(4):329-334. doi:10.1007/BF01028401
[35] D. R. Lide, 2003-2004, CRC Handbook of Chemistry and Physics (84th). CRC Press, Boca Raton, p 12-124.
[36] A. Gil, A. Clotet, J. M. Ricart, G. Kresse, M. García-Hernández, N. R?sch, and P. Sautet, 2003. Site preference of CO chemisorbed on Pt (111) from density functional calculations. Surface Science, 530(1-2):71-87. doi:10.1016/S0039-6028(03)00307-8
[37] Sally A. Wasileski, Michael J. Weaver, Marc T. M. Koper, 2001. Potential-dependent chemisorption of carbon monoxide on platinum electrodes: new insight from quantum-chemical calculations combined with vibrational spectroscopy. Journal of Electroanalytical Chemistry , 500(1-2): 344-355. doi:10.1016/S0022-0728(00)00420-4
[38] Francesc Illas, Franca Mele, Daniel Curulla, Anna Clotet, Josep M. Ricart, 1998. Electric field effects on the vibrational frequency and bonding mechanism of CO on Pt (111). Electrochimica Acta, 44(6-7): 1213-1279. doi:10.1016/S0013-4686(98)00224-2
[39] C. Klünker, M. Balden, S. Lehwald, W. Daum, 1996. CO stretching vibrations on Pt (111) and Pt(110) studied by sumfrequency generation. Surface Science, 360(1-3): 104-111. doi:10.1016/0039-6028(96)00638-3
[40] M. ?. Pedersen, M. L. Bocquet, P. Sautet, E. Laegsgaard, I. Stensgaard, F. Besenbacher, 1999. CO on Pt (111): binding site assignment from the interplay between measured and calculated STM images. Chemical Physics Letters, 299 (5): 403-409. doi:10.1016/S0009-2614(98)01318-9
[41] W. Liu, Y. F. Zhu, J. S. Lian, and Q. Jiang, 2007. Adsorption of CO on Surfaces of 4d and 5d Elements in Group VIII. The Journal of Physical Chemistry C, 111(2):1005-1009. doi:10.1021/jp0661488
[42] J. Tersoff and D. R. Hamann, 1983. Theory and Application for the Scanning Tunneling Microscope. Physical Review Letters, 50(25):1998-2001. doi:10.1103/PhysRevLett.50.1998

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.