The Influence Factors Analysis to Improve the Compatibility and the Mechanical Behavior of IPN, Gradient IPN and BaTiO3 Filled IPN

Abstract

Interpenetrating polymer network (IPN), gradient IPN and BaTiO3 filled IPN, composed of poly(ethylene glycol urethane) (PEGPU) and unsaturated polyester resin (UP) curing at room temperatures were prepared. Then the effect of soft/hard segment ratio in polyurethane (PU), component ratio of PU to UP in IPN, adding amount of BaTiO3 in filled IPN, the component sequences and interval times between each IPN for gradient IPN, on morphology and mechanical behavior of IPN and BaTiO3/IPN nanocomposites with different molecular weight of PU were studied systematically. Moreover, the investigation on the relationship between the morphologies and the mechanical properties indicated that the IPN with finer morphology exhibited an excellent consistency of the higher strengths and elongations.

Share and Cite:

Y. Guo, D. Tang and Y. Wang, "The Influence Factors Analysis to Improve the Compatibility and the Mechanical Behavior of IPN, Gradient IPN and BaTiO3 Filled IPN," Materials Sciences and Applications, Vol. 3 No. 9, 2012, pp. 606-611. doi: 10.4236/msa.2012.39087.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. H. Hsieh, J. S. Tsai and K. W. Chang, “Interpenetrating Polymer Network of Polyurethane and Unsaturated Polyester: Mechanical Properties,” Journal of Materials Science, Vol. 26, No. 21, 1991, pp. 5877-5882.doi:10.1007/BF01130128
[2] T. Trakulsujaritchok and D. J. Hourston, “Damping Characteristics and Mechanical Properties of Silica Filled PUR/PEMA Simultaneous Interpenetrating Polymer Networks,” European Polymer Journal, Vol. 42, No. 11, 2006, pp. 2968-2976.doi:10.1016/j.eurpolymj.2006.07.028
[3] M. A. Syed, Siddaramaiah and B. Suresha, “Mechanical and Abrasive Wear Behavior of Coleus Spent Filled Unsaturated Polyester/Polymethyl Methacrylate Semi Interpenetrating Polymer Network Composites,” Journal of Composite Materials, Vol. 43, No. 21, 2009, pp. 2387- 2400. doi:10.1177/0021998309341850
[4] S. C. Kim, D. Klempner and K. C. Frisch, “Polyurethane Interpenetrating Polymer Networks. I. Synthesis and Morphology of Polyrurethane-Poly(methyl Methacrylate) Interpenetrating Polymer Networks,” Macromolecules, Vol. 9, No. 2, 1976, pp. 258-263.doi:10.1021/ma60050a016
[5] Y. L. Cai, P. S. Liu and X. B. Hu, “Microstructure-Ten- sile Properties Relationships of Polyrurethane/ Poly(urethane-Modified Bismaleimide) Interpenetrating Polymer Networks,” Polymer, Vol. 41, No. 15, 2000, pp. 5653-5660. doi:10.1016/S0032-3861(99)00797-1
[6] C. Vancaeyzeele, O. Fichet, J. Laskar, S. Boileau and D. Teyssie, “Polyisobutene/Polystyrene Interpenetrating Polymer Networks: Effects of Network Formation Order and Composition on the IPN Architecture,” Polymer, Vol. 47, No. 6, 2006, pp. 2046-2060.doi:10.1016/j.polymer.2006.01.026
[7] D. Y. Tang, X. L. Wu and L. S. Qiang, “Polymerization Process and Morphology of PU/VER IPNs,” Journal of Materials Science & Technology, Vol. 23, 2007, pp. 423- 426.
[8] F. J. Hua and C. P. Hu, “Interpenetrating Polymer Networks of Epoxy Resin and Urethane Acrylate Resin: 2. Morphology and Mechanical Property,” European Polymer Journal, Vol. 36, No. 1, 2000, pp. 27-33. doi:10.1016/S0014-3057(99)00027-0
[9] K. H. Hsieh, J. L. Han and C. T. Yu, “Graft Inperpenetrating Polymer Networks of Urethane-Modified Bismaleimide and Epoxy(I): Mechanical Behavior and Morphology,” Polymer, Vol. 42, No. 6, 2001, pp. 2491-2500.doi:10.1016/S0032-3861(00)00641-8
[10] D. Y. Tang, C. L. Qin and W. M. Cai, “Preparation, Morphology, and Mechanical Properties of Modified-PU/ UPR Graft-IPN Nanocomposites with BaTiO3 Fiber,” Materials Chemistry and Physics, Vol. 82, No. 1, 2003, pp. 73-77. doi:10.1016/S0254-0584(03)00162-7
[11] D. Y. Tang, J. S. Zhang, D. R. Zhou and L. C. Zhao, “Influence of BaTiO3 on Damping and Dielectric Properties of Filled Polyurethane/Unsaturated Polyester Resin Interpenetrating Polymer Networks,” Journal of Materials Science, Vol. 40, No. 13, 2005, pp. 3339-3345.doi:10.1007/s10853-005-0423-3
[12] J. Yang and M. A. Winnik, “Polyurethane-Polyacrylate Interpenetrating Networks. 1. Preparation and Morphology,” Macromolecules, Vol. 29, No. 22, 1996, pp. 7047- 7054. doi:10.1021/ma9601373
[13] L. Zhang and Q. Zhou, “Effects of Molecular Weight of Nitrocellulose on Structure and Properties of Polyurethane/Nitrocellulose IPN,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 37, No. 14, 1999, pp. 1623-1631.doi:10.1002/(SICI)1099-0488(19990715)37:14<1623::AID-POLB7>3.0.CO;2-5
[14] Y. S. Lipatov, V. F. Rosovitsky, T. T. Alekseeva and N. V. Babkina, “Effect of Physical Ageing on the Viscoelasticity on Interpenetrating Polymer Networks,” Polymer International, Vol. 49, No. 4, 2000, pp. 334-336.doi:10.1002/(SICI)1097-0126(200004)49:4<334::AID-PI371>3.0.CO;2-Q
[15] K. H. Yoon, S. T. Yoon and O. O. Park, “Damping Properties and Transmission Loss of Polyurethane. I. Effect of Soft and Hard Segment Compositions,” Journal of Applied Polymer Science, Vol. 75, No. 5, 2000, pp. 604-611.doi:10.1002/(SICI)1097-4628(20000131)75:5<604::AID-APP2>3.0.CO;2-#

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.