Share This Article:

Dirac Hamiltonian with Imaginary Mass and Induced Helicity—Dependence by Indefinite Metric

Abstract Full-Text HTML XML Download Download as PDF (Size:216KB) PP. 887-894
DOI: 10.4236/jmp.2012.39116    3,682 Downloads   5,808 Views   Citations

ABSTRACT

It is of general theoretical interest to investigate the properties of superluminal matter wave equations for spin one-half particles. One can either enforce superluminal propagation by an explicit substitution of the real mass term for an imaginary mass, or one can use a matrix representation of the imaginary unit that multiplies the mass term. The latter leads to the tachyonic Dirac equation, while the equation obtained by the substitution m im in the Dirac equation is naturally referred to as the imaginary-mass Dirac equation. Both the tachyonic as well as the imaginary-mass Dirac Hamiltonians commute with the helicity operator. Both Hamiltonians are pseudo-Hermitian and also possess additional modified pseudo-Hermitian properties, leading to constraints on the resonance eigenvalues. Here, by an explicit calculation, we show that specific sum rules over the The spectrum is found to consist of well-defined real energy eigenvalues and complex resonance and anti-resonance energies. In the quantized imaginary-mass Dirac field, one-particle states of right-handed helicity acquire a negative norm (“indefinite metric”) and can be excluded from the physical spectrum by a Gupta-Bleuler type condition.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

U. Jentschura, "Dirac Hamiltonian with Imaginary Mass and Induced Helicity—Dependence by Indefinite Metric," Journal of Modern Physics, Vol. 3 No. 9, 2012, pp. 887-894. doi: 10.4236/jmp.2012.39116.

References

[1] U. D. Jentschura and B. J. Wundt, “Pseudo-Hermitian Quan- tum Dynamics of Tachyonic Spin-1/2 Particles,” Journal of Physics A: Mathematical and Theoretical, e-print arXiv: 1110.4171, in Press.
[2] U. D. Jentschura and B. J. Wundt, “Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay,” The European Physical Journal C—Particles and Fields, Vol. 72, No. 2, 2012, p. 1894. doi:10.1140/epjc/s10052-012-1894-4
[3] O. M. P. Bilaniuk, V. K. Deshpande and E. C. G. Sudarshan, “‘Meta’ Relativity,” American Journal of Physics, Vol. 30, No. 10, 1962, p. 718. doi:10.1119/1.1941773
[4] G. Feinberg, “Possibility of Faster-than-Light Particles,” Physical Review, Vol. 159, No. 5, 1967, p. 1089. doi:10.1103/PhysRev.159.1089
[5] M. E. Arons and E. C. G. Sudarshan, “Lorentz Invariance, Local Field Theory, and Faster-than-Light Particles,” Physical Review, Vol. 173, No. 5, 1968, p. 1622. doi:10.1103/PhysRev.173.1622
[6] J. Dhar and E. C. G. Sudarshan, “Quantum Field Theory of Interacting Tachyons,” Physical Review, Vol. 174, No. 5, 1968, p. 1808. doi:10.1103/PhysRev.174.1808
[7] O.-M. Bilaniuk and E. C. G. Sudarshan, “Causality and Space-Like Signals,” Nature, Vol. 223, 1969, pp. 386-387. doi:10.1038/223386b0
[8] G. Feinberg, “Lorentz Invariance of Tachyon Theories,” Physical Review D, Vol. 17, No. 6, 1978, p. 1651. doi:10.1103/PhysRevD.17.1651
[9] http://cupp.oulu.fi/neutrino/nd-mass.html
[10] R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, J. F. Wilkerson and D. A. Knapp, “Limit on Mass from Observation of the β Decay of Molecular Tritium,” Physical Review Letters, Vol. 67, No. 8, 1991, p. 957. doi:10.1103/PhysRevLett.67.957
[11] K. Assamagan, et al., “Measurement of the Muon Momentum in Pion Decay at Rest Using a Surface Muon Beam,” Physical Letters B, Vol. 335, No. 2, 1994, pp. 231- 236. doi:10.1016/0370-2693(94)91419-2
[12] W. Stoeffl and D. J. Decman, “Anomalous Structure in the Beta Decay of Gaseous Molecular Tritium,” Physical Review Letters, Vol. 75, No. 18, 1995, p. 3237. doi:10.1103/PhysRevLett.75.3237
[13] K. Assamagan, et al., “Upper Limit of the Muon-Neutrino Mass and Charged-Pion Mass from Momentum Analysis of a Surface Muon Beam,” Physical Review D, Vol. 53, No. 11, 1996, p. 6065. doi:10.1103/PhysRevD.53.6065
[14] C. Weinheimer, B. Degen, A. Bleile, J. Bonn, L. Bornschein, O. Kazachenko, A. Kovalik and E. Otten, “High Precision Measurement of the Tritium Β Spectrum near Its Endpoint and upper Limit on the Neutrino Mass,” Physics Letters B, Vol. 460, No. 1-2, 1999, pp. 219-226. doi:10.1016/S0370-2693(99)00780-7
[15] V. M. Lobashev, et al., “Direct Search for Mass of Neutrino and Anomaly in the Tritium Beta-Spectrum,” Physics Letters B, Vol. 460, No. 1-2, 1999, pp. 227-235. doi:10.1016/S0370-2693(99)00781-9
[16] A. I. Belesev, et al., “Investigation of Space-Charge Effects in Gaseous Tritium as a Source of Distortions of the Beta Spectrum Observed in the Troitsk Neutrino-Mass Experiment,” Physics of Atomic Nuclei, Vol. 71, No. 3, 2008, pp. 427-436. doi:10.1134/S1063778808030046
[17] G. R. Kalbfleisch, N. Baggett, E. C. Fowler and J. Alspector, “Experimental Comparison of Neutrino, Antineutrino, and Muon Velocities,” Physical Review Letters, Vol. 43, No. 19, 1979, p. 1361. doi:10.1103/PhysRevLett.43.1361
[18] P. Adamson, et al., “Measurement of Neutrino Velocity with the MINOS Detectors and NuMI Neutrino Beam,” Physical Review D, Vol. 76, No. 7, 2007, p. 072005. doi:10.1103/PhysRevD.76.072005
[19] M. Antonello, et al., “ICARUS Collaboration, Measurement of the Neutrino Velocity with the ICARUS Detector at the CNGS Beam,” e-print arXiv: 1203.3433v3.
[20] J. Ciborowski, “Hypothesis of Tachyonic Neutrinos,” Acta Physica Polonica B, Vol. 29, No. 1-2, 1998, pp. 113-121.
[21] M. Dracos, “On Behalf of the OPERA Collaboration, the Neutrino Velocity Measurement by OPERA Experiment,” the XXV International Conference on Neutrino Physics and Astrophysics, Kyoto, 3-9 June 2012, 15 p. http://regmedia.co.uk/2012/06/11/neutrinos_not_ftl_slides.pdf
[22] A. Chodos, A. I. Hauser and V. A. Kostelecky, “The Neutrino as a Tachyon,” Physics Letters B, Vol. 150, No. 6, 1985, pp. 431-435. doi:10.1016/0370-2693(85)90460-5
[23] A. Chodos, V. A. Kostelecky, R. Potting and E. Gates, “Null Experiments for Neutrino Masses,” Modern Physics Letters A, Vol. 7, No. 6, 1992, p. 467. doi:10.1142/S0217732392000422
[24] A. Chodos and V. A. Kostelecky, “Nuclear Null Tests for Spacelike Neutrinos,” Physics Letters B, Vol. 336, No. 3-4, 1994, pp. 295-302. doi:10.1016/0370-2693(94)90535-5
[25] J. Rembielinski, “Tachyons and Preferred Frames,” International Journal of Modern Physics A, Vol. 12, No. 9, 1997, p. 1677.
[26] T. Chang, “A New Dirac-Type Equation for Tachyonic Neutrinos,” e-print arXiv: hep-th/0011087.
[27] T. Chang, “Parity Violation and a Preferred Frame,” e-print arXiv: quant-ph/0204002.
[28] J. Bandukwala and D. Shay, “Theory of Free, Spin-$1/2$ Tachyons,” Physical Review D, Vol. 9, No. 4, 1974, p. 889. doi:10.1103/PhysRevD.9.889
[29] W. Pauli, “On Dirac’s New Method of Field Quantization,” Reviews of Modern Physics, Vol. 15, No. 3, 1943, p. 175. doi:10.1103/RevModPhys.15.175
[30] C. M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry,” Physical Review Letters, Vol. 80, No. 24, 1998, p. 5243. doi:10.1103/PhysRevLett.80.5243
[31] C. M. Bender and G. V. Dunne, “Large-Order Perturbation Theory for a Non-Hermitian PT-Symmetric Hamiltonian,” Journal of Mathematical Physics, Vol. 40, No. 10, 1999, pp. 4616-4621. doi:10.1063/1.532991
[32] C. M. Bender, S. Boettcher and P. N. Meisinger, “PT-Symmetric Quantum Mechanics,” Journal of Mathematical Physics, Vol. 40, No. 5, 1999, pp. 2201-2229. doi:10.1063/1.532860
[33] C. M. Bender and E. J. Weniger, “Numerical Evidence That the Perturbation Expansion for a Non-Hermitian PT-Symmetric Hamiltonian Is Stieltjes,” Journal of Mathematical Physics, Vol. 42, No. 5, 2001, pp. 2167-2183. doi:10.1063/1.1362287
[34] C. M. Bender, D. C. Brody and H. F. Jones, “Complex Extension of Quantum Mechanics,” Physical Review Letters, Vol. 89, No. 27, 2002, p. 270401. doi:10.1103/PhysRevLett.89.270401
[35] A. Mostafazadeh, “Pseudo-Hermiticity versus PT-Symmetry III: Equivalence of Pseudo-Hermiticity and the Presence of Antilinear Symmetries,” Journal of Mathematical Physics, Vol. 43, No. 8, 2002, pp. 3944-3951. doi:10.1063/1.1489072
[36] A. Mostafazadeh, “Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries,” Journal of Mathematical Physics, Vol. 44, No. 3, 2003, pp. 974-989. doi:10.1063/1.1539304
[37] U. D. Jentschura, A. Surzhykov and J. Zinn-Justin, “Unified Treatment of Even and Odd Anharmonic Oscillators of Arbitrary Degree,” Physical Review Letters, Vol. 102, No. 1, 2009, p. 011601. doi:10.1103/PhysRevLett.102.011601
[38] U. D. Jentschura, A. Surzhykov and J. Zinn-Justin, “Multi-Instantons and Exact Results III: Unification of Even and Odd Anharmonic Oscillators,” Annals of Physics, Vol. 325, No. 5, 2010, pp. 1135-1172. doi:10.1016/j.aop.2010.01.002
[39] C. Itzykson and J. B. Zuber, “Quantum Field Theory,” McGraw-Hill, New York, 1980.
[40] C. M. Bender, J. Brod, A. Refig and M. E. Reuter, “The C Operator in PT-Symmetric Quantum Theories,” Journal of Physics A: Mathematical and General, Vol. 37, No. 43, 2004, p. 10139. doi:10.1088/0305-4470/37/43/009
[41] R. M. Bionta, “Detection of a Rare Event on 23 February 1987 by the Neutrino Radiation Detector under Mont Blanc,” JETP Letters, Vol. 45, No. 10, 1987, pp. 593-595.
[42] T. Adam, et al., “OPERA Collaboration, Measurement of the Neutrino Velocity with the OPERA Detector in the CNGS Beam,” e-print arXiv: 1109.4897v4.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.