Two Models of Optical Pulse Self-Compressor Combined the Nonlinear Coupler with Backward Raman Fiber Amplifier

Abstract

Based on the nonlinearity of the nonlinear optical coupler (NOC) and the amplifying capacity of the backward Raman fiber amplifier (PBRFA), two new optical systems to compress the optical pulse (Optical Pulse Self-Compressor: OPSC) are proposed. Using the expressions describing relationship between input and output intensities from ports of the NOC and the derived expression describing the amplification of the PBRFA, the compressing process of the optical pulse propagating through the OPSC is simulated. The results show that the peak of the optical pulse will be enhanced and the duration of the optical pulse will be reduced significantly. Consequently, the shape of input pulse is completely compressed with the certain efficiency. It means the optical pulse is self-compressed without the external pump pulse by proposing the OPSC.

Share and Cite:

Q. Ho and V. Chu, "Two Models of Optical Pulse Self-Compressor Combined the Nonlinear Coupler with Backward Raman Fiber Amplifier," Journal of Electromagnetic Analysis and Applications, Vol. 4 No. 9, 2012, pp. 379-385. doi: 10.4236/jemaa.2012.49053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. V. Taracov, “Laser Physics,” Mir, Moscow, 1988, pp. 214-335.
[2] G. H. He and S. H. Liu, “Physics of Nonlinear Optics,” World Scientific Publishing Co Pte Ltd., Singapore, 1999.
[3] E. V. Ermolaeva and V. G. Bespalov, “Optimum Conditions for Stimulated Raman Scattering, Compression, and Amplification of Supershort Pulses in a Plasma with Compressed Gases,” Journal of Optical Technology, Vol. 74, No. 11, 2007, pp. 734-739.
[4] J. Wu and M. S. Kao, “Light Amplification Using Backward Raman Pumping,” Microwave and Optical Technology Letters, Vol. 1, No. 4, 1988, pp. 129-131. doi:10.1002/mop.4650010406
[5] J. R. Murray, J. Goldhar, D. Eimerl and A. Szoke, “High-Eficiency Energy Extraction in Backward-Wave Raman Scattering,” IEEE Journal of Quantum Electronics, Vol. 15, No. 5, 1979, pp. 342-368. doi:10.1109/JQE.1979.1070009
[6] M. N. Islam, “Raman Amplifiers for Telecommunications,” IEEE Journal of Selected Topics in Quantum, Vol. 8, No.3, 2002, pp. 548-559.
[7] J. Kim, H. J. Lee, H. Suk and I. S. Ko, “Solitary Wave Generation by Two Counter-Propagating Laser Pulses in a Plazma” Physics Letters A, Vol. 314, No. 5-6, 2003, pp. 464-471. doi:10.1016/S0375-9601(03)00944-7
[8] V. L. Kalashnikov, “Pulse Shortening in the Passive QSwitched Lasers with Intracavity Stimulated Raman Scattering,” Optics Communications, Vol. 218, No. 1-3, 2003, pp. 147-153. doi:10.1016/S0030-4018(03)01191-X
[9] V. M. Malkin N. J. Fisch and J. S. Wurtele, “Compression of Powerful x-Ray Pulses to Atto-Second Durations by Stimulated Raman Backscattering in Plasmas,” Physical Review Letters, Vol. 75, No. 2, 2007, Article ID: 026404. doi:10.1103/PhysRevE.75.026404
[10] E. Dewald, et al., “Amplification of 1 Pico-Second Pulse Length Beam by Stimulated Raman Scattering of 1 ns Beam in Low Density Plasma,” UCRL-CONF-213152, 2005.
[11] J. Wu, F. Luo and M. Cao, “Generation of Ultrafast Pulse via Combined Effect of Stimulated Raman Scattering and Non-Degenerate Two-Photon Absorption in Silicon Nanophotonic Chip,” Pramana—Journal of Physics, Vol. 72, No. 40, 2009, pp. 727-734.
[12] I. P. Prokopovich and A. A. Khrushchinskii, “Highly Efficient Generation of Attosecond Pulses in Coherent Stimulated Raman Self-Scattering of Intense Demtosecond Laser Pulses,” Laser Physics, Vol. 7, No. 2, 1997, pp. 305308.
[13] E. M. Dianov, “Raman Fiber Amplifier for the Spectral Region near 1.3 μm,” Laser Physics, Vol. 6, No. 3, 1996, pp. 579-581.
[14] P. A. Apanasevich, et al., “Compression of Laser Pulse in the Interaction of Counterpropagating Waves in a Medium with an Inertial Cubic Nonlinearity,” Laser Physics, Vol. 6, No. 6, 1996, pp. 1050-1055.
[15] M. Conforti, et al., “Pulse Shaping via Backward Second Harmonic Generation,” Optics Express, Vol. 16, No. 3, 2008, p. 2115. doi:10.1364/OE.16.002115
[16] Y. Ping, et al., “Amplification of Ultra-Short Laser Pulses by a Resonant Raman Scheme in a Gas-Jet Plasma,” Physical Review Letters, Vol. 92, No. 17, 2004, Article ID: 175001. doi:10.1103/PhysRevLett.92.175007
[17] A. A. Balakin, et al., “Backward Raman Amplification in Partially Ionized Gas,” Physical Review E, Vol. 72, No. 3, 2005, Article ID: 036401. doi:10.1103/PhysRevE.72.036401
[18] C. H. Pai et al., “Backward Raman Amplification in Plasma Waveguide,” Physical Review Letters, Vol. 101, No. 6, Article ID: 065005.
[19] V. M. Malkin and N. J. Fisch, “Backward Raman Amplification of Ionizing Laser Pulses,” Physics of Plasmas, Vol. 8, No. 10, 2001, p. 4698. doi:10.1063/1.1400791
[20] V. M. Malkin and N. J. Fisch, “Short-Pulse Laser Amplification and Saturation Using Stimulated Raman Backscattering and Amplification in a Gas Jet Plasma,” Physics of Plasmas, Vol. 17, No. 7, 2010, Article ID: 073109. doi:10.1063/1.3460347
[21] E. V. Ermolaeva and V. G. Bespalov, “Optimum Conditions for Stimulated Raman Scattering, Compression and Amplification of Supershort Pulses in a Plasma with Compressed Gases,” Journal of Optical Technology, Vol. 74, No. 11, 2007, p. 734. doi:10.1364/JOT.74.000734
[22] Y. Ping, I. Geltner and S. Suckewer, “Raman Scattering,” Physical Review E, Vol. 67, 2003, Article ID: 016401. doi:10.1103/PhysRevE.67.016401
[23] H. Q. Quy, “Applied Nonlinear Optics,” Hanoi National University Publishing, Hanoi, 2007, pp. 214-201.
[24] R. H. Stolen and E. P. Ippen, “Rman Gain in Glass Optical Waveguides,” Applied Physics Letters, Vol. 22, No. 6, 1973, pp. 135-142. doi:10.1063/1.1654637
[25] G. P. Agraval, “Application of Nonlinear Fiber Optics,” Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, 2001, pp. 76-90.
[26] H. Schneider and G. Zeidler, “Manufacturing Processes and Designs of Optical Waveguides,” Telcom Report, Vol. 6, Special Issue “Optical Communication”, 1983, p. 31.
[27] H. Q. Quy, V. N. Sau and N. T. T. Tam, “Output Intensity of Nonlinear Coupler,” Advance in Optics, Photonics, Spectroscopy & Applications, Nhatrang, 10-14 September 2008, p. 252.
[28] N. T. T. Tam, H. Q. Quy, V. N. Sau and N. V. Hoa, “Nonlinear Coupler for Optical Fiber Mach-Zehnder Interferometer,” Communications in Mathematical Physics, Vol. 20, No. 1, 2010, pp. 45-50.
[29] J. M. Jonathan, “Introduction for Optical Waveguides and Fiber,” Summer School, Doson, Vietnam, 2004, p. 245.
[30] R. L. Carman, et al., “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Physical Review A, Vol. 2, No. 1, 1970, p. 60. doi:10.1103/PhysRevA.2.60
[31] C. Lin and R.H. Stolen, “Measurement of Nonlinear Refractive-index Coefficients Using Time-Resolved Interferometry,” Applied Physics Letters, Vol. 29, No. 7, 1976, pp. 428-430. doi:10.1063/1.89107
[32] D. J. Blumenthal, “Introduction to Optical Amplifiers”. www.ece.ucsb.edu/courses/ECE228/228B
[33] J. Wu and M. S. Kao, “Light Amplification Using Backward Raman Pumping,” Microwave and Optical Technology Letters, Vol. 1, No. 4, 1988, pp. 129-131. doi:10.1002/mop.4650010406

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.