Numerical Study of Natural Convection in a Two-Dimensional Enclosure with a Sinusoidal Boundary Thermal Condition Utilizing Nanofluid

Abstract

Nanofluids are considered to offer important advantages over conventional heat transfer fluids. A model is developed to analyze the behavior of nanofluids taking into account the solid fraction χ. The Navier-Stokes equations are solved numerically with Alternating Direct Implicit method (ADI method) for various Grashof numbers 104 and 105; we have an excellent agreement between our numerical code and previously published works. Copper-Water nanofluid is used with Pr = 6.2 and solid volume fraction χ is varied as 0%; 5%; 10%; 15% and 20%. The problem considered is a two-dimensional heat transfer in a square cavity. The vertical walls are differentially heated, the left is maintained at hot con- dition (sinusoidal) when the right one is cold. The horizontal walls are assumed to be insulated, non conducting and impermeable to mass transfer. The nanofluid in the enclosure is Newtonian, incompressible and laminar. The nanopar- ticles are assumed to have a uniform shape and size. Moreover, it is assumed that both the fluid phase and nanoparticles are in thermal equilibrium state and they flow at the same velocity. The thermophysical properties of the nanofluid are assumed to be constant except for the density variation in the buoyancy force, which is based on the Boussinesq approximation. Different correlations are proposed for predicting heat transfer for uniform and sinusoidal boundary thermal conditions.

Share and Cite:

I. Bouihi and R. Sehaqui, "Numerical Study of Natural Convection in a Two-Dimensional Enclosure with a Sinusoidal Boundary Thermal Condition Utilizing Nanofluid," Engineering, Vol. 4 No. 8, 2012, pp. 445-452. doi: 10.4236/eng.2012.48058.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. U. S. Choi and J. A. Eastman, “Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows,” In: D. A. Siginer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, 1995, pp. 99-105.
[2] G. Polidori, S. Fohanno and C. T. Nguyen, “A Note on Heat Transfer Modelling of Newtonian Nanofluids in Laminar Free Convection,” International Journal of Thermal Sciences, Vol. 46, No. 8, 2007, pp. 739-744. doi:10.1016/j.ijthermalsci.2006.11.009
[3] K. S. Hwang, J. Lee and S. P. Jang, “Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity,” International Journal of Heat and Mass Transfer, Vol. 50, No. 19-20, 2007, pp. 4003-4010. doi:10.1016/j.ijheatmasstransfer.2007.01.037
[4] D. Y. Tzou, “Thermal Instability of Nanofluids in Natural Convection,” International Journal of Heat and Mass Transfer, Vol. 55, No. 11-12, 2008, pp. 2967-2979. doi:10.1016/j.ijheatmasstransfer.2007.09.014
[5] Q. Li and Y. Xuan, “Heat transfer Enhancement of Nanofluids,” International Journal of Heat and Fluid Flow, Vol. 21, No. 1, 2000, pp. 58-64. doi:10.1016/S0142-727X(99)00067-3
[6] Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson and G. Wu, “Heat Transfer Properties of Nanoparticle-inFluid Dispersions (Nanofluids) in Laminar Flow,” International Journal of Heat and Mass Transfer, Vol. 48, No. 6, 2005, pp. 1107-1116. doi:10.1016/j.ijheatmasstransfer.2004.09.038
[7] D. Wen and Y. Ding, “Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions,” International Journal of Heat and Mass Transfer, Vol. 47, No. 24, 2004, pp. 5181-5188 doi:10.1016/j.ijheatmasstransfer.2004.07.012
[8] C. Nie, W. H. Marlow and Y. A. Hassan, “Discussion of Proposed Mechanisme of Thermal Conductivity Enhancement in Nanofluids,” International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 1342-1348. doi:10.1016/j.ijheatmasstransfer.2007.11.034
[9] K. Khanafer, K. Vafai and M. Lightstone, “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” International Journal of Heat and Mass Transfer, Vol. 46, No. 19, 2003, pp. 3639-3653. doi:10.1016/S0017-9310(03)00156-X
[10] H. C. Brinkman, “The Viscosity of Concentrated Suspensions and Solutions,” Journal of Chemical and Physics, Vol. 20, No. 4, 1952, pp. 571-581. doi:10.1063/1.1700493
[11] A. K. Santra, S. Sen and N. Chakraborty, “Analysis of Laminar Natural Convection in a Square Cavity Using Nanofluid,” Proceedings of the 31st National Conference of Fluid Mechanics and Fluid Power, Jadavpur, 11-13 December 2004, pp. 240-248.
[12] R. K. Tiwari and M. K. Das, “Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids,” International Journal of Heat and Mass Transfer, Vol. 50, No. 9-10, 2007, pp. 2002-2018. doi:10.1016/j.ijheatmasstransfer.2006.09.034
[13] G. Barakos and E. Mitsoulis, “Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models with Wall Functions,” International Journal of Numerical Methods Fluids, Vol. 18, No. 7, 1994, pp. 695-719. doi:10.1002/fld.1650180705
[14] N. C. Markatos and K. A. Pericleous, “Laminar and Turbulent Natural Convection in an Enclosed Cavity,” International Journal of Heat and Mass Transfer, Vol. 27, No. 5, 1984, pp. 755-772. doi:10.1016/0017-9310(84)90145-5
[15] T. Fusegi, K. Kuwahara and B. Farouk, “A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubic Enclosure,” International Journal of Heat and Mass Transfer, Vol. 34, No. 6, 1991, pp. 1543-1557. doi:10.1016/0017-9310(91)90295-P
[16] G. De Vahl Davis, “Natural Convection of Air in a Square Cavity: A Benchmark Solution,” International Journal of Numerical Methods Fluids, Vol. 3, No. 3, 1983, pp. 249-264. doi:10.1002/fld.1650030305

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.