Dimers as Fast Diffusing Species for the Aggregation of Oxygen in Boron-Doped Czochralski Silicon: Formation of New Thermal Donors

Abstract

The thermal behaviors of oxygen-related complexes in boron doped Czochralski Silicon (Cz-Si) wafers at 450°C and 800°C were investigated using Fourier transform infrared spectroscopy (FTIR) and Hall mobility measurements. Activation of thermal donors (TDs) at 450°C leads to a decrease of both mobility and majority carrier concentration using the four point probes configuration of Van Der Pauw. It was found that annealing at 450°C would possibly affect the electronic properties of the Si wafers via the formation of interstitial dioxygen defects (IO2i), which exhibit an IR absorption band positioned at 545 cm–1. A strengthening of the IR bands peaking at around 1595 cm–1, 1667 cm–1, 1720 cm–1 and 1765 cm–1 occurs at 450°C, while they disappear at 800°C. At high temperatures, the precipitation of interstitial oxygen becomes predominant over all other oxygen-related reactions. The dynamic of oxygen-thermal donor generation-annihilation in Cz-Si involving the formation of small oxygen clusters is discussed.

Share and Cite:

B. Moumni, A. Jaballah, S. Aouida and B. Bessaïs, "Dimers as Fast Diffusing Species for the Aggregation of Oxygen in Boron-Doped Czochralski Silicon: Formation of New Thermal Donors," World Journal of Condensed Matter Physics, Vol. 2 No. 3, 2012, pp. 165-170. doi: 10.4236/wjcmp.2012.23027.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. G?tz, G. Pensl and W. Zulehner, “Observation of Five Additional Thermal Donor Species TD12 to TD16 and of Regrowth of Thermal Donors at Initial Stages of the New Oxygen Donor Formation in Czochralski-Grown Silicon,” Physical Review B, Vol. 46, No. 7, 1992, pp. 4312-4315. doi:10.1103/PhysRevB.46.4312
[2] M. Pesola, J. von Boehm, T. Mattila and R. Nieminen, “Computational Study of Interstitial Oxygen and Vacancy-Oxygen Complexes in Silicon,” Physical Review B, Vol. 60, No. 16, 1999, pp. 11449-11463. doi:10.1103/PhysRevB.60.11449
[3] J. Coutinho, R. Jones, P. R. Briddon and S. ?berg, “Oxygen and Dioxygen Centers in Si and Ge: Density- Functional Calculations,” Physical Review B, Vol. 62, No. 16, 2000, pp. 10824-10840. doi:10.1103/PhysRevB.62.10824
[4] W. M. Bullis, M. Watanabe, A. Baghdadi, Y. Z. Li, R. I. Scace, R. W. Series and P. Stallhofer, “Semiconductor Silicon/1986,” In: H. R. Huff, T. Abe and B. Kolbesen, Eds., The Electrochemical Society Softbound Proceedings Series, The Electrochemical Society, Pennington, 1986, p. 166.
[5] M. Pesola, J. von Boehm and R. Nieminen, “Vibrations of the Interstitial Oxygen Pairs in Silicon,” Physical Review Letter, Vol. 82, No. 20, 1999, pp. 4022-4025. doi:10.1103/PhysRevLett.82.4022
[6] W. G?tz, G. Pensl, W. Zulehner, R. Newman and S. McQuaid, “Thermal Donor Formation and Annihilation at Temperatures above 500??C in Czochralski-Grown Si,” Journal of Applied Physics, Vol. 84, No. 7, 1998, pp. 3561-3568.
[7] J. Lindstr?m, T. Hallberg, J. Hermansson, L. Murin, B. Komarov, V. Markevich, M. Kleverman and B. G. Svensson, “Interaction between Self-Interstitials and the Oxygen Dimer in Silicon,” Physica B, Vol. 308-310, 2001, p. 284. doi:10.1016/S0921-4526(01)00694-9
[8] D. Aberg, B. Svensson, T. Hallberg and J. Lindstr?m, “Kinetic Study of Oxygen Dimer and Thermal Donor Formation in Silicon,” Physical Review B, Vol. 58, No. 19, 1998, pp. 12944-12951. doi:10.1103/PhysRevB.58.12944
[9] L. Murin, T. Hallberg, V. Markevich and J. Lindstr?m, “Experimental Evidence of the Oxygen Dimer in Silicon,” Physical Review Letter, Vol. 80, No. 1, 1998, pp. 93-96. doi:10.1103/PhysRevLett.80.93
[10] Y. J. Lee, J. von Boehm and R. M. Nieminen, “Simulation of the Kinetics of Oxygen Complexes in Silicon,” Physical Review B, Vol. 66, No. 16, 2002, pp. 165221- 165232. doi:10.1103/PhysRevB.66.165221
[11] Y. J. Lee, J. von Boehm, M. Pesola and R. Nieminen, “First Principles Study of Migration Restructuring, and Dissociation Energies of Oxygen Complexes in Silicon,” Physical Review B, Vol. 65, No. 8, 2002, Article ID: 085205. doi:10.1103/PhysRevB.65.085205
[12] Y. J. Lee, J. von Boehm, M. Pesola and R. Nieminen, “Comparison of Oxygen-Chain Models for Late Thermal Double Donors in Silicon,” Applied Physics Letter, Vol. 82, No. 13, 2003, pp. 2094-2096. doi:10.1063/1.1563813
[13] L. Murin, J. Lindstr?m, V. Markevich, A. Misiuk and C. Londos, “Thermal Double Donor Annihilation and Oxygen Precipitation at around 650?C in Czochralski-Grown Si: Local Vibrational Mode Studies,” Journal of Physics: Condensed Matter, Vol. 17, 2005, pp. 2237-2246. doi:10.1088/0953-8984/17/22/011
[14] O. Prakash, N. Upreti and S. Singh, “Behaviour of Oxygen in CZ-Silicon during 430℃ - 630℃ Heat Treatment,” Materials Science and Engineering B, Vol. 52, No. 2-5, 1998, pp. 180-184.
[15] M. Pesola, J. von Boehm and R. Nieminen, “Structures of Thermal Double Donors in Silicon,” Physical Review Letters, Vol. 84, No. 23, 2000, pp. 5343-5346. doi:10.1103/PhysRevLett.84.5343
[16] S. Oberg, C. Ewels, R. Jones, T. Hallberg, J. Lindstrom, L. Murin and P. R. Briddon, “First Stage of Oxygen Aggregation in Silicon: The Oxygen Dimer,” Physical Review Letter, Vol. 81, No. 14, 1998, pp. 2930-2933. doi:10.1103/PhysRevLett.81.2930
[17] V. V. Voronkov and R. Falster, “Latent Complexes of Interstitial Boron and Oxygen Dimers as a Reason for Degradation of Silicon-Based Solar Cells,” Journal of Applied Physics, Vol. 107, No. 5, 2010, pp. 53509-53520. doi:10.1063/1.3309869
[18] L. I. Murin, E. A. Tolkacheva, V. P. Markevich, A. R. Peaker, B. Hamilton, E. Monakhov, B. G. Svensson, J. L. Lindstr?m, P. Santos, J. Coutinho and A. Carvalho, “The Oxygen Dimer in Si: Its Relationship to the Light-Induced Degradation of Si Solar Cells?” Applied Physics Letters, Vol. 98, No. 18, 2011, pp. 182101-182103. doi:10.1063/1.3584138

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.