Aptasensors in Health, Environment and Food Safety Monitoring

Abstract

Biosensors have been developed using various types of sensing elements like biomacromolecules (viz. enzymes, antibodies, receptors, nucleic acids, etc.) organelles, tissues, intact cells of both microorganisms and higher organisms. A recent trend is the emergence of aptamers as sensing elements that has the potential to replace all the above ligands. This is possible due to the unique features of aptamers (sensitivity, specificity, reusability, stability, non-immunogenic- ity), which can be easily exploited in biosensor technology. Aptasensors are thus basically biosensors based on aptamers as ligand molecules. Here we review the various applications of aptasensors in health (specifically in diagnostics), food industry and environmental monitoring.

Share and Cite:

Sett, A. , Das, S. , Sharma, P. and Bora, U. (2012) Aptasensors in Health, Environment and Food Safety Monitoring. Open Journal of Applied Biosensor, 1, 9-19. doi: 10.4236/ojab.2012.12002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. N. Brody, M. C. Willis, J. D. Smith, S. Jayasena, D. Zichi and L. Gold, “The Use of Aptamers in Large Arrays for Molecular Diagnostics,” Molecular Diagnostics, Vol. 4, No. 4, 1999, pp. 381-388. doi:10.1016/S1084-8592(99)80014-9
[2] C. Tuerk and L. Gold, “Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase,” Science, Vol. 249, No. 4968, 1990, pp. 505-510. doi:10.1126/science.2200121
[3] Y. Li, H. J. Lee and R. M. Corn, “Fabrication and Characterization of RNA Aptamer Microarrays for the Study of Protein-Aptamer Interactions with SPR Imaging,” Nucleic Acids Research, Vol. 34, No. 22, 2006, pp. 6416- 6424. doi:10.1093/nar/gkl738
[4] Z. M. Dong and G. C. Zhao, “Quartz Crystal Microbalance Aptasensor for Sensitive Detection of Mercury(II) Based on Signal Amplification with Gold Nanoparticles,” Sensors, Vol. 12, No. 6, 2012, pp. 7080-7094. doi:10.3390/s120607080
[5] O. S. Kwon, S. J. Park, J. Y. Hong, A. R. Han, J. S. Lee, J. S. Lee, J. H. Oh and J. Jang, “Flexible FET-Type VEGF Aptasensor Based on Nitrogen-Doped Graphene Converted from Conducting Polymer,” ACS Nano, Vol. 6, No. 2, 2012, pp. 1486-1493. doi:10.1021/nn204395n
[6] A. Sassolas, L. J. Blum and B. D. Leca-Bouvier, “Optical Detection Systems Using Immobilized Aptamers,” Biosensors and Bioelectronics, Vol. 26, No. 9, 2011, pp. 3725-3736. doi:10.1016/j.bios.2011.02.031
[7] M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset and E. Peyrin, “A DNA Aptamer as a New Target-Spe- cific Chiral Selector for HPLC,” Journal of the American Chemical Society, Vol. 125, No. 28, 2003, pp. 8672-8679. doi:10.1021/ja034483t
[8] F. Pu, Z. Z. Huang, D. Hu, J. S. Ren, S. Wang and X. G. Qu, “Sensitive, Selective and Label-Free Protein Detection Using a Smart Polymeric Transducer and Aptamer/ Ligand System,” Chemical Communications, No. 47, 2009, pp. 7357-7359. doi:10.1039/b918241a
[9] Y. Li, H. J. Lee and R. M. Corn, “Fabrication and Characterization of RNA Aptamer Microarrays for the Study of Protein-Aptamer Interactions with SPR Imaging,” Nucleic Acids Research, Vol. 34, No. 22, 2006, pp. 6416- 6424. doi:10.1093/nar/gkl738
[10] L. J. Bai, R. Yuan, Y. Q. Chai, Y. Zhuo, Y. L. Yuan and Y. Wang, “Simultaneous Electrochemical Detection of Multiple Analytes Based on Dual Signal Amplification of Single-Walled Carbon Nanotubes and Multi-Labeled Graphene Sheets,” Biomaterials, Vol. 33, No. 4, 2012, pp. 1090-1096. doi:10.1016/j.biomaterials.2011.10.012
[11] S. B. Xie, R. Yuan, Y. Q. Chai, L. J. Bai, Y. L. Yuan and Y. Wang, “Label-Free Electrochemical Aptasensor for Sensitive Thrombin Detection Using Layer-by-Layer Self-Assembled Multilayers with Toluidine Blue-Graphene Composites and Gold Nanoparticles,” Talanta, Article in Press.
[12] Y. Wang, R. Yuan, Y. Q. Chai, Y. L. Yuan, L. J. Bai and Y. H. Liao, “A Multi-Amplification Aptasensor for Highly Sensitive Detection of Thrombin Based on High-Quality Hollow CoPt Nanoparticles Decorated Graphene,” Bio- sensors and Bioelectronics, Vol. 30, No. 1, 2011, pp. 61- 66. doi:10.1016/j.bios.2011.08.027
[13] J. Zhao, Y. Y. Zhang, H. T. Li, Y. Q. Wen, X. Y. Fan, F. B. Lin, L. Tan and S. Z. Yao, “Ultrasensitive Electrochemical Aptasensor for Thrombin Based on the Amplification of Aptamer-AuNPs-HRP Conjugates,” Biosensors and Bioelectronics, Vol. 26, No. 5, 2011, 2297-2303. doi:10.1016/j.bios.2010.09.056
[14] Y. H. Liao, R. Yuan, Y. Q. Chai, Y. Zhuo, Y. L. Yuan, L. J. Bai, L. Mao and S. R. Yuan, “In-Situ Produced Ascorbic Acid as Coreactant for an Ultrasensitive Solid-State tris(2,2′-bipyridyl) Ruthenium(II) Electrochemiluminescence Aptasensor,” Biosensors and Bioelectronics, Vol. 26, No. 12, 2011, pp. 4815-4818. doi:10.1016/j.bios.2011.04.019
[15] X. Y. Zhang, Z. L. Zhao, H. C. Mei, Y. P. Qiao, Q. L. Liu, W. X. Luo, T. Xia and X. H. Fang, “Fluorescence Aptasensor Based on DNA Charge Transport for Sensitive Protein Detection in Serum,” Analyst, Vol. 136, No. 22, 2011, pp. 4764-4769. doi:10.1039/c1an15265c
[16] J. Y. Huang, X. L. Luo, I. Lee, Y. S. Hu, X. T. Cui and M. Yun, “Rapid Real-Time Electrochemical Detection of Proteins Using Single Conducting Polymer Nanowire- Based Microfluidic Aptasensor,” Biosensors and Bioelectronics, Vol. 30, No.1, 2011, pp. 306-309. doi:10.1016/j.bios.2011.08.016
[17] D. T. Tran, V. Vermeeren, L. Grieten, S. Wenmackers, P. Wagner, J. Pollet, K. P. Janssen, L. Michiels and J. Lammertyn, “Nanocrystalline Diamond Impedimetricaptasen- sor for the Label-Free Detection of Human IgE,” Biosensors and Bioelectronics, Vol. 26, No. 6, 2011, pp. 2987- 2993. doi:10.1016/j.bios.2010.11.053
[18] C. Y. Yao, Y. Z. Qi, Y. H. Zhao, Y. Xiang, Q. H. Chen and W. L. Fu, “Aptamer-Based Piezoelectric Quartz Cry- stal Microbalance Biosensor Array for the Quantification of IgE,” Biosensors and Bioelectronics, Vol. 24, No. 8, 2009, pp. 2499-2503. doi:10.1016/j.bios.2008.12.036
[19] J. L. Wang, R. J. Lv, J. J. Xu, D. K. Xu and H. Y. Chen, “Characterizing the Interaction between Aptamers and Human IgE by Use of Surface Plasmon Resonance,” Analytical and Bioanalytical Chemistry, Vol. 390, No. 4, 2008, pp. 1059-1065. doi:10.1007/s00216-007-1697-x
[20] S. Lee, Y. S. Kim, M. Jo, M. Jin, D. K. Lee and S. Kim, “Chip-Based Detection of Hepatitis C Virus Using RNA Aptamers That Specifically Bind to HCV Core Antigen,” Biochemical and Biophysical Research Communications, Vol. 358, No. 1, 2007, pp. 47-52. doi:10.1016/j.bbrc.2007.04.057
[21] A. Bini, S. Centi, S. Tombelli, M. Minunni and M. Mascini, “Development of an Optical RNA-Based Aptasensor for C-Reactive Protein,” Analytical and Bioanalytical Chemistry, Vol. 390, No. 4, 2008, pp. 1077-1086. doi:10.1007/s00216-007-1736-7
[22] J. Pultar, U. Sauer, P. Domnanich and C. Preininger, “Aptamer-Antibody On-Chip Sandwich Immunoassay for Detection of CRP in Spiked Serum,” Biosensors and Bioelectronics, Vol. 24, No. 5, 2009, pp. 1456-1461. doi:10.1016/j.bios.2008.08.052
[23] L. Mao, R. Yuan, Y. Q. Chai, Y. Zhuo and Y. Xiang, “Signal-Enhancer Molecules Encapsulated Liposome as a Valuable Sensing and Amplification Platform Combining the Aptasensor for Ultrasensitive ECL Immunoassay,” Biosensors and Bioelectronics, Vol. 26, No. 10, 2011, 4204-4208. doi:10.1016/j.bios.2011.02.035
[24] Y. Liu, N. Tuleouva, E. Ramanculov and A. Revzin, “Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection,” Analytical Chemistry, Vol. 82, No. 19, 2010, pp. 8131-8136. doi:10.1021/ac101409t
[25] T. G. McCauley, N. Hamaguchi and M. Stanton, “Aptamer-Based Biosensor Arrays for Detection and Quantification of Biological Macromolecules,” Analytical Biochemistry, Vol. 319, No. 2, 2003, pp. 244-250. doi:10.1016/S0003-2697(03)00297-5
[26] L. Y. Feng, Y. Chen, J. S. Ren and X. G. Qu, “A Graphene Functionalized Electrochemical Aptasensor for Selective Label-Free Detection of Cancer Cells,” Biomaterials, Vol. 32, No. 11, 2011, pp. 2930-2937. doi:10.1016/j.biomaterials.2011.01.002
[27] Y. Chai, D. Y. Tian, J. Gu and H. Cui, “A Novel Electrochemiluminescence Aptasensor for Protein Based on a Sensitive N-(aminobutyl)-N-Ethylisoluminol-Functionalized Gold Nanoprobe,” Analyst, Vol. 136, No. 16, pp. 3244- 3251. doi:10.1039/c1an15298j
[28] J, Zhao, X. L. He, B. Bo, X, J. Liu, Y. M. Yin, G. X. Li; “A ‘Signal-On’ Electrochemical Aptasensor for Simultaneous Detection of Two Tumor Markers,” Biosensors and Bioelectronics, Vol. 34, No. 14, 2012, pp. 249-252. doi:10.1016/j.bios.2012.02.016
[29] G. F. Jie, L. Wang, J. X. Yuan and S. S. Zhang, “Versatile Electrochemiluminescence Assays for Cancer Cells Based on Dendrimer/CdSe-ZnS-Quantum Dot Nanoclusters,” Analytical Chemistry, Vol. 83, No. 10, 2011, pp. 3873-3880. doi:10.1021/ac200383z
[30] X. Hun, H. C. Chen and W. Wang, “A Electrogenerated Chemiluminescence Biosensor for Ramos Cancer Cell Using DNA Encapsulated Ru(bpy)3Cl2 as Signal Probe,” Biosensors and Bioelectronics, Vol. 26, No. 9, 2011, pp. 3887-3893. doi:10.1016/j.bios.2011.03.004
[31] N. Savory, K. Abe, K. Sode and K. Ikebukuro, “Selection of DNA Aptamer against Prostate Specific Antigen Using a Genetic Algorithm and Application to Sensing,” Biosensors and Bioelectronics, Vol. 26, No. 4, 2010, pp. 1386-1391. doi:10.1016/j.bios.2010.07.057
[32] J. Huang, X. Luo, I. Lee, Y. Hu, X. T. Cui and M. Yun, “Rapid Real-Time Electrochemical Detection of Proteins Using Single Conducting Polymer Nanowire-Based Microfluidic Aptasensor,” Biosensors and Bioelectronics, Vol. 30, No. 1, 2011, pp. 306-309. doi:10.1016/j.bios.2011.08.016
[33] J. Bala, A. Bhaskar, A. Varshney, A. K. Singh, S. Dey and P. Yadava, “In Vitro Selected RNA Aptamer Recognizing Glutathione Induces ROS Mediated Apoptosis in the Human Breast Cancer Cellline MCF 7,” RNA Biology, Vol. 8, No. 1, 2011, pp. 101-111. doi:10.4161/rna.8.1.14116
[34] Y. Pan, M. Guo, Z. Nie, Y. Huang, C. Pan, K. Zeng, Y. Zhang and S. Yao, “Selective Collection and Detection of Leukemia Cells on a Magnet-Quartz Crystal Microbalance System Using Aptamer-Conjugated Magnetic Beads,” Biosensors and Bioelectronics, Vol. 25, No. 7, 2010, pp. 1609-1614. doi:10.1016/j.bios.2009.11.022
[35] O. S. Kwon, S. J. Park and J. Jang, “A High-Performance VEGF Aptamer Functionalized Polypyrrole Nanotube Biosensor,” Biomaterials, Vol. 31, No. 17, 2010, pp. 4740- 4747. doi:10.1016/j.biomaterials.2010.02.040
[36] A. K. Cheng, H. Su, Y. A. Wang and H. Z. Yu, “Ap- tamer-Based Detection of Epithelial Tumor Marker Mucin 1 with Quantum Dot-Based Fluorescence Readout,” Ana- lytical Chemistry, Vol. 81, No. 15, 2009, pp. 6130-6139. doi:10.1021/ac901223q
[37] X. Chen, M. C. Estevez, Z. Zhu, Y. F. Huang, Y. Chen, L. Wang and W. Tan, “Using Aptamer-Conjugated Fluorescence Resonance Energy Transfer Nanoparticles for Multiplexed Cancer Cell Monitoring,” Analytical Chemistry, Vol. 81, No. 16, 2009, pp. 7009-7014. doi:10.1021/ac9011073
[38] http://www.who.int/foodsafety/en/
[39] E. E. Ferapontova, E. M. Olsen and K. V. Gothelf, “An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum,” Journal of the American Chemical Society, Vol. 130, No. 13, 2008, pp. 4256- 4258. doi:10.1021/ja711326b
[40] J. Chen, J. Jiang, X. Gao, G. Liu, G. Shen and R. Yu, “A New Aptameric Biosensor for Cocaine Based on Surface-Enhanced Raman Scattering Spectroscopy,” Chemistry, Vol. 14, No. 27, 2008, pp. 8374-8382. doi:10.1002/chem.200701307
[41] J. Mehta, B. Van Dorst, E. Rouah-Martin, T. W. Herrebou, M. L. Scippo, R. Blust and J. Robbens, “In Vitro Se- lection and Characterization of DNA Aptamers Recog- nizing Chloramphenicol,” Journal of Biotechnology, Vol. 155, No. 4, 2011, pp. 361-369. doi:10.1016/j.jbiotec.2011.06.043
[42] D. H. Burke, D. C. Hoffman, A. Brown, M. Hansen, A. Pardi and L. Gold, “RNA Aptamers to the Peptidyl Transferase Inhibitor Chloramphenicol,” Chemistry & Biology, Vol. 4, No. 11, 1997, pp. 833-843. doi:10.1016/S1074-5521(97)90116-2
[43] S. Pilehvar, J. Mehta, F. Dardenne, J. Robbens, R. Blust and K. De Wael, “Aptasensing of Chloramphenicol in the Presence of Its Analogues: Reaching the Maximum Residue Limit,” Analytical Chemistry, Vol. 84, No. 15, 2012, pp. 6753-6758. doi:10.1021/ac3012522
[44] C. M. Spahn and C. D. Prescott, “Throwing a Spanner in the Works: Antibiotics and the Translation Apparatus,” Journal of Molecular Medicine, Vol. 74, No. 8, 1996, pp. 423-439. doi:10.1007/BF00217518
[45] F. K. Muriuki, W. O. Ogara, F. M. Njeruh and E. S. Mitema, “Tetracycline Residue Levels in Cattle Meat from Nairobi Salughter House in Kenya,” Journal of Veterinary Science, Vol. 2, No. 2, 2001, pp. 97-101.
[46] A. L. Pena, C. M. Lino and I. N. Silveira, “Determination of Oxytetracycline, Tetracycline, and Chlortetracycline in Milk by Liquid Chromatography with Postcolumn Derivatization and Fluorescence Detection,” Journal of AOAC International, Vol. 82, No. 1, 1999, pp. 55-60.
[47] M. Jeon and I. R. Paeng, “Quantitative Detection of Tetracycline Residues in Honey by a Simple Sensitive Immunoassaym,” Analytica Chimica Acta, Vol. 626, No. 2, 2008, pp. 180-185. doi:10.1016/j.aca.2008.08.003
[48] S. M. Croubels, K. E. Vanoosthuyze and C. H. Van Peteghem, “Use of Metal Chelate Affinity Chromatography and Membrane-Based Ion-Exchange as Clean-Up Procedure for Trace Residue Analysis of Tetracyclines in Animal Tissues and Egg,” Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 690, No. 1-2, 1997, pp. 173-179. doi:10.1016/S0378-4347(96)00368-4
[49] M. C. Gwee, “Can Tetracycline-Induced Fatty Liver in Pregnancy Be Attributed to Choline Deficiency?” Medical Hypotheses, Vol. 9, No. 2, 1982, pp. 157-162. doi:10.1016/0306-9877(82)90131-1
[50] C. Berens, A. Thain and R. Schroeder, “A Tetracycline- Binding RNA Aptamer,” Bioorganic & Medicinal Chemistry, Vol. 9, No. 10, 2001, pp. 2549-2556. doi:10.1016/S0968-0896(01)00063-3
[51] H. Xiao and T. E. Edwards and A. R. Ferré-D’Amaré, “Structural Basis for Specific, High-Affinity Tetracycline Binding by an in Vitro Evolved Aptamer and Artificial Riboswitch,” Chemistry & Biology, Vol. 15, No. 10, 2008, pp. 1125-1137. doi:10.1016/j.chembiol.2008.09.004
[52] Y. J. Kim, Y. S. Kim, J. H. Niazi and M. B. Gu, “Electrochemical Aptasensor for Tetracycline Detection,” Bioprocess and Biosystems Engineering, Vol. 33, No. 1, 2010, pp. 31-37. doi:10.1007/s00449-009-0371-4
[53] J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang and C. Zhang, “Fast Determination of the Tetracyclines in Milk Samples by the Aptamer Biosensor,” Analyst, Vol. 135, No. 10, 2010, pp. 2706-2710. doi:10.1039/c0an00237b
[54] S Jeong and I. R. Paeng, “Sensitivity and Selectivity on Aptamer-Based Assay: The Determination of Tetracycline Residue in Bovine Milk,” Scientific World Journal, Vol. 2012, 2012, Article ID: 159456. doi:10.1100/2012/159456
[55] J. Wirmer and E. Westhof, “Molecular Contacts between Antibiotics and the 30S Ribosomal Particle,” Methods in Enzymology, Vol. 415, 2006, pp. 180-202. doi:10.1016/S0076-6879(06)15012-0
[56] M. P. Mingeot-Leclercq and P. M. Tulkens, “Aminoglycosides: Nephrotoxicity,” Antimicrobial Agents and Che- motherapy, Vol. 43, No. 5, 1999, pp. 1003-1012.
[57] Y. Wang and R. R. Rando, “Specific Binding of Aminoglycoside Antibiotics to RNA,” Chemical Biology, Vol. 2, No. 5, 1995, pp. 281-290. doi:10.1016/1074-5521(95)90047-0
[58] Y. Wang, J. Killian, K. Hamasaki and R. R. Rando, “RNA Molecules That Specifically and Stoichiometrically Bind Aminoglycoside Antibiotics with High Affinities,” Biochemistry, Vol. 35, No. 38, 1996, pp. 12338- 12346. doi:10.1021/bi960878w
[59] A. A. Rowe, E. A. Miller and K. W. Plaxco, “Reagentless Measurement of Aminoglycoside antIbiotics in Blood Serum via an Electrochemical, Ribonucleic Acid Aptamer-Based Biosensor,” Analytical Chemistry, Vol. 82, No. 17, 2010, pp. 7090-7095. doi:10.1021/ac101491d
[60] K. M. Song, M. Cho, H. Jo, K. Min, S. H. Jeon, T. Kim, M. S. Han, J. K. Ku and C. Ban, “Gold Nanoparticle- Based Colorimetric Detection of Kanamycin Using a DNA Aptamer,” Analytical Biochemistry, Vol. 415, No. 2, 2011, pp. 175-181. doi:10.1016/j.ab.2011.04.007
[61] N. Derbyshire, S. J. White, D. H. Bunka, L. Song, S. Stead, J. Tarbin, M. Sharman, D. Zhou and P. G. Stockley, “Toggled RNA Aptamers against Aminoglycosides Allowing Facile Detection of Antibiotics Using Gold Nano- particle Assays,” Analytical Chemistry, Vol. 84, No. 15, 2012, pp. 6595-6602. doi:10.1021/ac300815c
[62] J. A. Cruz-Aguado and G. Penner, “Determination of Ochratoxin a with a DNA Aptamer,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 22, 2008, pp. 10456-10461. doi:10.1021/jf801957h
[63] P. O. Magalh?es, A. M. Lopes, P. G. Mazzola, C. Rangel- Yagui, T. C. Penna and A. Pessoa Jr., “Methods of Endotoxin Removal from Biological Preparations: A Review,” Journal of Pharmacy & Pharmaceutical Sciences, Vol. 10, No. 3, 2007, pp. 388-404.
[64] S. E. Kim, W. Su, M. Cho, Y. Lee and W. S. Choe, “Harnessing Aptamers for Electrochemical Detection of Endotoxin,” Analytical Biochemistry, Vol. 424, No. 1, 2012, pp. 12-20. doi:10.1016/j.ab.2012.02.016
[65] P. Nadal, A. Pinto, M. Svobodova and N. Canela, “O’Sullivan CK. DNA Aptamers against the Lup an 1 Food Allergen,” PLoS One, 2012, Vol. 7, No. 4, Article ID: e35253. doi:10.1371/journal.pone.0035253
[66] H. S. Chang, K. H. Choo, B. Lee and S. J. Choi. “The Methods of Identification, Analysis, and Removal of Endocrine Disrupting Compounds (EDCs) in Water,” Journal of Hazardous Materials, Vol. 172, No. 1, 2009, pp. 1-12. doi:10.1016/j.jhazmat.2009.06.135
[67] N. Yildirim, F. Long, C. Gao, M. He, H. C. Shi and A. Z. Gu, “Aptamer-Based Optical Biosensor for Rapid and Sensitive Detection of 17β-Estradiol in Water Samples,” Environmental Science & Technology, 2012, Vol. 46, No. 6, pp. 3288-3294.
[68] M. Jo, J. Y. Ahn, J. Lee, S. Lee, S. W. Hong, J. W. Yoo, J. Kang, P. Dua, D. K. Lee, S. Hong and S. Kim, “Development of Single-Stranded DNA Aptamers for Specific Bisphenol a Detection,” Oligonucleotides, Vol. 21, No. 2, 2011, pp. 85-91. doi:10.1089/oli.2010.0267
[69] M. Kim, H. J. Um, S. Bang, S. H. Lee, S. J. Oh, J. H. Han, K. W. Kim, J. Min and Y. H. Kim, “Arsenic Removal from Vietnamese Groundwater Using the Arsenic-Bind- ing DNA Aptamer,” Environmental Science & Technology, 2009, Vol. 43, No. 24, pp. 9335-9340. doi:10.1021/es902407g
[70] L. Li, B. Li, Y. Qi and Y. Jin, “Label-Free Aptamer- Based Colorimetric Detection of Mercury Ions in Aqueous Media Using Unmodified Gold Nanoparticles as Colorimetric Probe,” Analytical and Bioanalytical Chemistry, 2009, Vol. 393, No. 8, pp. 2051-2057. doi:10.1007/s00216-009-2640-0
[71] Y. Helwa, N. Dave, R. Froidevaux, A. Samadi and J. Liu, “Aptamer-Functionalized Hydrogel Microparticles for Fast Visual Detection of Mercury(II) and Adenosine,” ACS Applied Materials Interfaces, Vol. 4, No. 4, 2012, pp. 2228-2233. doi:10.1021/am300241j
[72] X. G. Hu, K. L. Tulsieram, Q. X. Zhou, L. Mu and J. P. Wen, “Polymeric Nanoparticle-Aptamer Bioconjugates Can Diminish the Toxicity of Mercury in Vivo,” Toxicology Letters, Vol. 208, No. 1, 2012, pp. 69-74. doi:10.1016/j.toxlet.2011.10.006
[73] J. Sinha, S. J. Reyes and J. P. Gallivan, “Reprogramming Bacteria to Seek and Destroy an Herbicide,” Nature Chemical Biology, Vol. 6, No. 6, 2010, pp. 464-470. doi:10.1038/nchembio.369
[74] J .He, Y. Liu, M. Fan and X. Liu, “Isolation and Identification of the DNA Aptamer Target to Acetamiprid,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 5, 2011, pp. 1582-1586. doi:10.1021/jf104189g
[75] L. Wang, X. Liu, Q. Zhang, C. Zhang, Y. Liu, K. Tu and J. Tu, “Selection of DNA Aptamers That Bind to Four Organophosphorus Pesticides,” Biotechnology Letters, Vol. 34, No. 5, 2012, pp. 869-874. doi:10.1007/s10529-012-0850-6
[76] Z. Tang, P. Parekh, P. Turner, R. W. Moyer and W. Tan. “Generating Aptamers for Recognition of Virus-Infected cells,” Clinical Chemistry, Vol. 55, No. 4, 2009, pp. 813- 822. doi:10.1373/clinchem.2008.113514
[77] M. Minunni, S. Tombelli, A. Gullotto, E. Luzi and M. Mascini, “Development of Biosensors with Aptamers as Bio-Recognition Element: The Case of HIV-1 Tat Protein,” Biosensors and Bioelectronics, Vol. 20, No. 6, 2004, pp. 1149-1156. doi:10.1016/j.bios.2004.03.037
[78] S. Tombelli, M. Minunni, E. Luzi and M. Mascini, “Aptamer-Based Biosensors for the Detection of HIV-1 Tat Protein,” Bioelectrochemistry, Vol. 67, No. 2, 2005, pp. 135-141. doi:10.1016/j.bioelechem.2004.04.011
[79] S. Lee, Y. S. Kim, M. Jo, M. Jin, D. K. Lee and S. Kim, “Chip-Based Detection of Hepatitis C Virus Using RNA aptamers That Specifically Bind to HCV Core Antigen,” Biochemical and Biophysical Research Communications, Vol. 358, No. 1, 2007, pp. 47-52. doi:10.1016/j.bbrc.2007.04.057
[80] M. Ikanovic, W. E. Rudzinski, J. G. Bruno, A. Allman, M. P. Carrillo, S. Dwarakanath, S. Bhahdigadi, P. Rao, J. L. Kiel and C. J. Andrews, “Fluorescence Assay Based on Aptamer-Quantum Dot Binding to Bacillus thuringiensis Spores,” Journal of Fluorescence, Vol. 17, No. 2, 2007, pp. 193-199. doi:10.1007/s10895-007-0158-4
[81] H. M. So, D. W. Park, E. K. Jeon, Y. H. Kim, B. S. Kim, C. K. Lee, S. Y. Choi, S. C. Kim, H. Chang and J. O. Lee, “Detection and Titer Estimation of Escherichia Coli Using Aptamer-Functionalized Single-Walled Carbon-Na- notube Field-Effect Transistors,” Small, Vol. 4, No. 2, 2008, pp. 197-201. doi:10.1002/smll.200700664
[82] L. N. Cella, P. Sanchez, W. Zhong, N. V. Myung, W. Chen and A. Mulchandani, “Nano Aptasensor for Protective Antigen Toxin of Anthrax,” Analytical Chemistry, 2010, Vol. 82, No. 5, pp. 2042-2047. doi:10.1021/ac902791q

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.