Share This Article:

Efficient transcription of the larvicidal cry4Ba gene from Bacillus thuringiensis in transgenic chloroplasts of the green algal Chlamydomonas reinhardtii

Abstract Full-Text HTML Download Download as PDF (Size:1194KB) PP. 362-369
DOI: 10.4236/abb.2012.34052    3,216 Downloads   5,812 Views   Citations

ABSTRACT

Unicellular micro-alga Chlamydomonas reinhardtii has been recognized as a promising host for expressing recombinant proteins albeit its limited utility due to low levels of heterologous protein expression. Here, transcription of the 3.4-kb mosquito-larvicidal cry4Ba gene from Bacillus thuringiensis in transgenic C. reinhardtii chloroplasts under control of the promoter and 5’-untranslated region of photosynthetic psbA gene was accomplished. Inverted repeats in chloroplast genomes of the host strain with deleted endogenous psbA genes were selected as recombination targets. Two transformant lines were obtained by dual-phenotypic screening via exhibition of resistance to spectinomycin and restoration of photosynthetic activity. Stable and site-specific integration of intact cry4Ba and psbA genes into chloroplast genomes found in both transgenic lines implied homoplasmy of organelle populations. Achievement in cotranscription of cry4Ba and psbA transgenes revealed by RT-PCR and Northern blot analyses demonstrates the sufficiency of this system’s transcription machinery, offering the further innovation for insecticidal protein production.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Juntadech, T. , Yokthongwattana, K. , Tangphatsornruang, S. , Yap, Y. , Katzenmeier, G. and Angsuthanasombat, C. (2012) Efficient transcription of the larvicidal cry4Ba gene from Bacillus thuringiensis in transgenic chloroplasts of the green algal Chlamydomonas reinhardtii. Advances in Bioscience and Biotechnology, 3, 362-369. doi: 10.4236/abb.2012.34052.

References

[1] Angsuthanasombat, C. (2010) Structural basis of pore formation by mosquito-larvicidal proteins from Bacillus thuringiensis. The Open Toxinology Journal, 3, 119-125. doi:10.2174/1875414701003010119
[2] Becker, N. and Margalit, J. (1993) Use of Bacillus thuringiensis subsp. israelensis against mosquitoes and black flies. In: Entwistle, P.F., Cory, J.S., Bailey, M.J. and Higgs, S., Eds., Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, John Wiley & Sons, Chichester, UK, 147-170.
[3] Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Luxananil, P., Settasatian, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kd mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis in Escherichia coli. Molecular and General Genetics, 208, 384-389. doi:10.1007/BF00328128
[4] Angsuthanasombat, C. and Panyim, S. (1989) Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Applied and Environmental Microbiology, 55, 2428-2430.
[5] Dove, A. (2002) Uncorking the biomanufacturing bottleneck. Nature Biotechnology, 20, 777-779. doi:10.1038/nbt0802-777
[6] Ellstrand, N.C. (2001) When transgenes wander, should we worry? Plant Physiology, 125, 1543-1545. doi:10.1104/pp.125.4.1543
[7] Harris, E.H. (2001) Chlamydomonas as a model organism. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 363-406. doi:10.1146/annurev.arplant.52.1.363
[8] Mayfield, S.P. and Franklin, S.E. (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine, 23, 1828-1832. doi:10.1016/j.vaccine.2004.11.013
[9] Daniell, H. (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnology, 20, 581-586. doi:10.1038/nbt0602-581
[10] Maliga, P. (2004) Plastid transformation in higher plants. Annual Review of Plant Biology, 55, 289-313. doi:10.1146/annurev.arplant.55.031903.141633
[11] Mayfield, S.P., Manuell, A.L., Chen, S., Wu, J., Tran, M., Siefker, D., Muto, M. and Navarro, J.M. (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Current Opinion in Biotechnology, 18, 126-133. doi:10.1016/j.copbio.2007.02.001
[12] Malnoe, P., Mayfield, S.P. and Rochaix, J.D. (1988) Comparative analysis of the biogenesis of photosystem II in the wild-type and Y-1 mutant of Chlamydomonas reinhardtii. The Journal of Cell Biology, 106, 609-616. doi:10.1083/jcb.106.3.609
[13] Barnes, D., Franklin, S., Schultz, J., Henry, R., Brown, E., Coragliotti, A. and Mayfield, S.P. (2005) Contribution of 5'- and 3'-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Molecular Genetics and Genomics, 274, 625-636. doi:10.1007/s00438-005-0055-y
[14] Minagawa, J. and Crofts, A.R. (1994) A robust protocol for site-directed mutagenesis of the D1 protein in Chlamydomonas reinhardtii: A PCR-spliced psbA gene in a plasmid conferring spectinomycin resistance was introduced into a psbA deletion strain. Photosynthesis Research, 42, 121-131. doi:10.1007/BF02187123
[15] Gorman, D.S. and Levine, R.P. (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardti. Proceedings of the National Academy of Sciences of the United States of America, 54, 1665-1669.
[16] Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., Randolph-Anderson, B.L., Robertson, D., Klein, T.M., Shark, K.B. and Sanford, J.C. (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 240, 1534-1537. doi:10.1126/science.2897716
[17] Goldschmidt-Clermont, M. (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: A selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Research, 19, 4083-4089. doi:10.1093/nar/19.15.4083
[18] Sueoka, N. (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardti. Proceedings of the National Academy of Sciences of the United States of America, 46, 83-91.
[19] Murray, M.G. and Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321-4325. doi:10.1093/nar/8.19.4321
[20] Shi, H. and Bressan, R. (2006) RNA extraction. In: Salinas, J. and Sanchez-Serrano, J.J., Eds., Methods in Molecular Biology, Humana Press Incorporation, Totowa, New Jersey, 345-348.
[21] Yokthongwattana, K., Savchenko, T., Polle, J.E.W. and Melis, A. (2005) Isolation and characterization of a xanthophyll-rich fraction from the thylakoid membrane of Dunaliella salina (green algae). Photochemical and Photobiological Sciences, 4, 1028-1034. doi:10.1039/B504814A
[22] Moonsom, S., Chaisri, U., Kasinrerk, W. and Angsuthanasombat, C. (2007) Binding characteristic to mosquito-larval midgut proteins of the cloned domain II-III fragment from the Bacillus thuringiensis Cry4Ba toxin. Journal of Biochemistry and Molecular Biology, 40, 783-790.
[23] Klaus, S.M., Huang, F.C., Golds, T.J. and Koop, H.U. (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nature Biotechnology, 22, 225-229. doi:10.1038/nbt933
[24] Newman, S.M., Harris, E.H., Johnson, A.M., Boynton, J.E. and Gillham, N.W. (1992) Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii: evidence for a hotspot and an adjacent cold region. Genetics, 134, 413-429.
[25] Klaus, S.M., Huang, F.C., Eibl, C., Koop, H.U. and Golds, T.J. (2003) Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. The Plant Journal, 35, 811-821. doi:10.1046/j.1365-313X.2003.01838.x
[26] Day, A. and Goldschmidt-Clermont, M. (2011) The chloroplast transformation toolbox?: selectable markers and marker removal. Plant Biotechnology Journal, 9, 540-553. doi:10.1111/j.1467-7652.2011.00604.x
[27] Bock, R. (2001) Transgenic plastids in basic research and plant biotechnology. Journal of Molecular Biology. 312, 425-438. doi:10.1006/jmbi.2001.4960
[28] Choquet, Y. and Wollman, F.A. (2002) Translational regulations as specific traits of chloroplast gene expression. FEBS Letters, 529, 39-42. doi:10.1016/S0014-5793(02)03260-X
[29] Eberhard, S., Drapier, D. and Wollman, F.A. (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. The Plant Journal, 31, 149-160. doi:10.1046/j.1365-313X.2002.01340.x
[30] Gatehouse, J.A. (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiology, 146, 881-887. doi:10.1104/pp.107.111096

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.