Share This Article:

Age-dependent changes in the exocytotic efficacy in Kir6.2 ablated mouse pancreatic β-cells

Abstract Full-Text HTML XML Download Download as PDF (Size:4960KB) PP. 51-60
DOI: 10.4236/ojmip.2012.23008    2,644 Downloads   5,663 Views   Citations

ABSTRACT

In this study, we aimed to examine the electrophysio- logical properties of β-cells in Kir6.2-/- mice using fresh pancreatic tissue slice preparation. This prepa-ration is advantageous since it preserves socio-cellular context of the β-cells. Using this novel approach we revisited basic morphology and used whole-cell patch-clamp to study electrical excitability as well as to assess the modulation of the late steps of the exocy-totic activity of β-cells by cytosolic [Ca2+] changes in control and Kir6.2-/- mice. We found that young Kir6.2-/- mice (2 - 4 weeks old) were hypoglycaemic while aged Kir6.2-/- mice (5 - 60 weeks old) were normo- or even hyper- glycaemic. Membrane ca-pacitance measurements show- ed more efficient Ca2+-secretion coupling in young Kir6.2-/- mice, but this coupling is significantly reduced in older Kir6.2-/- mice. We have found increased exo- cytotic efficacy induced by repetitive trains of depo- larization pulses which may result from higher cyto- solic [Ca2+] due to hyperexcitability in Kir6.2-/- mice. This condition in turn resulted in the reduced β-cell number and func-tion in the following weeks. Detailed assessment of the efficacy of Ca2+ dependent exocyto- sis in β-cell from Kir6.2-/- mice may contribute to our understanding of the pathophysiology of persistent hyperinsulinemia hypoglycemia of infancy (PHHI) and suggest potential alternative therapeutic approaches for PHHI patients.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Beaudelaire Tsiaze, E. , Huang, Y. , Bombek, L. , Yang, S. , Jevšek, M. , Seino, S. and Slak Rupnik, M. (2012) Age-dependent changes in the exocytotic efficacy in Kir6.2 ablated mouse pancreatic β-cells. Open Journal of Molecular and Integrative Physiology, 2, 51-60. doi: 10.4236/ojmip.2012.23008.

References

[1] Ashcroft, F.M. and Rorsman, P. (1990) ATP-sensitive K+ channels: A link between B-cell metabolism and insulin secretion. Biochemical Society transactions, 18, 109-111.
[2] Maechler, P., Kennedy, E.D., Sebo, E., Valeva, A., Pozzan, T. and Wollheim, C.B. (1999) Secretagogues modulate the calcium concentration in the endoplasmic reticulum of insulin-secreting cells. Studies in aequorin-expressing intact and permeabilized ins-1 cells. The Journal of Biological Chemistry, 274, 12583-12592 doi:10.1074/jbc.274.18.12583
[3] Ammala, C., Eliasson, L., Bokvist, K., Larsson, O., Ashcroft, F.M. and Rorsman, P. (1993) Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. The Journal of Physiology, 472, 665-688.
[4] Inagaki, N., Gonoi, T., Clement, J.P., et al. (1995) Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science, 270, 1166-1170. doi:10.1126/science.270.5239.1166
[5] Shyng, S. and Nichols, C.G. (1997) Octameric stoichiometry of the KATP channel complex. The Journal of General Physiology, 110, 655-664. doi:10.1085/jgp.110.6.655
[6] Aguilar-Bryan, L., Nichols, C.G., Wechsler, S.W., et al. (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science, 268, 423-426. doi:10.1126/science.7716547
[7] Schwappach, B., Zerangue, N., Jan, Y.N. and Jan, L.Y. (2000) Molecular basis for K(ATP) assembly: Transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron, 26, 155-167. doi:10.1016/S0896-6273(00)81146-0
[8] Zerangue, N., Schwappach, B., Jan, Y.N. and Jan, L.Y. (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron, 22, 537-548. doi:10.1016/S0896-6273(00)80708-4
[9] Inagaki, N., Gonoi, T., Clement, J.P., et al. (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron, 16, 1011-1017. doi:10.1016/S0896-6273(00)80124-5
[10] Speier, S., Yang, S.B., Sroka, K., Rose, T. and Rupnik, M. (2005) KATP-channels in beta-cells in tissue slices are directly modulated by millimolar ATP. Molecular and Cellular Endocrinology, 230, 51-58. doi:10.1016/j.mce.2004.11.002
[11] Ashcroft, F.M. and Rorsman, P. (2004) Molecular defects in insulin secretion in type-2 diabetes. Reviews in Endocrine & Metabolic Disorders, 5, 135-142. doi:10.1023/B:REMD.0000021435.87776.a7
[12] Gloyn, A.L., Reimann, F., Girard, C., et al. (2005) Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 14, 925-934. doi:10.1093/hmg/ddi086
[13] Koster, J.C., Permutt, M.A. and Nichols, C.G. (2005) Diabetes and insulin secretion: The ATP-sensitive K+ channel (K ATP) connection. Diabetes, 54, 3065-3072. doi:10.2337/diabetes.54.11.3065
[14] Babenko, A.P., Polak, M., Cave, H., et al. (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. The New England Journal of Medicine, 355, 456-466. doi:10.1056/NEJMoa055068
[15] Huopio, H., Shyng, S.L., Otonkoski, T. and Nichols, C.G. (2002) K(ATP) channels and insulin secretion disorders. American Journal of Physiology—Endocrinology and Metabolism, 283, E207-E216.
[16] Lin, Y.W., Bushman, J.D., Yan, F.F., et al. (2008) Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. The Journal of Biological Chemistry, 283, 9146-9156. doi:10.1074/jbc.M708798200
[17] Nichols, C.G., Shyng, S.L., Nestorowicz, A., et al. (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science, 272, 1785-1787. doi:10.1126/science.272.5269.1785
[18] Aynsley-Green, A., Hussain, K., Hall, J., et al. (2000) Practical management of hyperinsulinism in infancy. Archives of Disease in Childhood—Fetal and Neonatal Edition, 82, F98-F107. doi:10.1136/fn.82.2.F98
[19] Miki, T., Nagashima, K., Tashiro, F., et al. (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proceedings of the National Academy of Sciences, 95, 10402-10406. doi:10.1073/pnas.95.18.10402
[20] Remedi, M.S., Rocheleau, J.V., Tong, A., et al. (2006) Hyperinsulinism in mice with heterozygous loss of K(ATP) channels. Diabetologia, 49, 2368-2378. doi:10.1007/s00125-006-0367-4
[21] Seino, S., Iwanaga, T., Nagashima, K. and Miki, T. (2000) Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes, 49, 311-318. doi:10.2337/diabetes.49.3.311
[22] Winarto, A., Miki, T., Seino, S. and Iwanaga, T. (2001) Morphological changes in pancreatic islets of KATP channel-deficient mice: The involvement of KATP channels in the survival of insulin cells and the maintenance of islet architecture. Archives of Histology and Cytology, 64, 59-67. doi:10.1679/aohc.64.59
[23] Speier, S. and Rupnik, M. (2003) A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Archiv: European Journal of Physiology, 446, 553-558.
[24] Dean, P.M. and Matthews, E.K. (1968) Electrical activity in pancreatic islet cells. Nature, 219, 389-390. doi:10.1038/219389a0
[25] Huang, Y.C., Rupnik, M. and Gaisano, H.Y. (2011) Unperturbed islet alpha-cell function examined in mouse pancreas tissue slices. The Journal of Physiology, 589, 395-408. doi:10.1113/jphysiol.2010.200345
[26] Speier, S., Gjinovci, A., Charollais, A., Meda, P. and Rupnik, M. (2007) Cx36-mediated coupling reduces betacell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes, 56, 1078-1086. doi:10.2337/db06-0232
[27] Gopel, S., Zhang, Q., Eliasson, L., et al. (2004) Capacitance measurements of exocytosis in mouse pancreatic alpha-, betaand delta-cells within intact islets of Langerhans. The Journal of Physiology, 556, 711-726. doi:10.1113/jphysiol.2003.059675
[28] Rose, T., Efendic, S. and Rupnik, M. (2007) Ca2+—Secretion coupling is impaired in diabetic Goto Kakizaki rats. The Journal of General Physiology, 129, 493-508. doi:10.1085/jgp.200609604
[29] Sedej, S., Tsujimoto, T., Zorec, R. and Rupnik, M. (2004) Voltage-activated Ca2+ channels and their role in the endocrine function of the pituitary gland in newborn and adult mice. The Journal of Physiology, 555, 769-782. doi:10.1113/jphysiol.2003.058271
[30] Kanezaki, Y., Obata, T., Matsushima, R., et al. (2004) K(ATP) channel knockout mice crossbred with transgenic mice expressing a dominant-negative form of human insulin receptor have glucose intolerance but not diabetes. Endocrine Journal, 51, 133-144. doi:10.1507/endocrj.51.133
[31] Sedej, S., Rose, T. and Rupnik, M. (2005) cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. The Journal of Physiology, 567, 799-813. doi:10.1113/jphysiol.2005.090381
[32] Skelin, M. and Rupnik, M. (2011) cAMP increases the sensitivity of exocytosis to Ca2+ primarily through protein kinase A in mouse pancreatic beta cells. Cell Calcium, 49, 89-99. doi:10.1016/j.ceca.2010.12.005
[33] Barg, S., Eliasson, L., Renstrom, E. and Rorsman, P. (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes, 51, S74-S82. doi:10.2337/diabetes.51.2007.S74

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.