Lipase-catalyzed regioselective synthesis of palmitolyglucose ester in ionic liquids

Abstract

Candida antarctica lipase B (CAL-B) was used as a catalyst in the synthesis of palmitolyglucose ester in the ionic liquids, 1-butyl-3-methylimidazolium triflu- oromethanesulfonate ([Bmim][TfO]), with glucose as a substrates and palmitic acid vinyl ester as the acyl donor. The effect of substrate ratio, lipase content, and temperature on the activity and stability of lipase was studied. The reaction conditions in [Bmim][TfO] re- sulting in the highest yield of the sugar ester were a temperature of 50?C, enzyme concentration of 50 mg/ mL, and a molar ratio of glucose/vinyl palmitate of 1:3. The major reaction product was purified and char- acterized by FT-IR, HPLC, MS and NMR, as being 6-O-palmitolyglucose ester. The advantages of ionic liquid vs. organic solvent were noted.

Share and Cite:

Liang, J. , Zeng, W. , Yao, P. and Wei, Y. (2012) Lipase-catalyzed regioselective synthesis of palmitolyglucose ester in ionic liquids. Advances in Biological Chemistry, 2, 226-232. doi: 10.4236/abc.2012.23027.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Flores, M.V., Naraghi, K., Engasser, J.M. and Halling, P.J. (2002) Influence of glucose solubility and dissolution rate on the kinetics of lipase catalyzed synthesis of glucose laurate in 2-methyl 2-butanol. Biotechnology and Bioengineering, 78, 814-820. doi:10.1002/bit.10263
[2] Kennedy, J.F., Kumar, H., Panesar, P.S., Marwaha, S.S., Goyal, R., Parmar, A. and Kaur, S. (2006) Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds. Journal of Chemical Technology & Biotechnology, 81, 866-876. doi:10.1002/jctb.1473
[3] Liu, Q.B., Michiel, H., Janssen, A., Rantwijk, F.V. and Sheldon, R.A. (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chemistry, 7, 39-42. doi:10.1039/b412848f
[4] Wei, Y.A., Zhang, Y. and Yao, P.J. (2009) Enzyme- catalyzed regioselective synthesis of sucrose vinyl adipoyl ester by an immobilized proleather. Journal of Guangxi Normal University: Natural Science Edition, 34, 484-490.
[5] Ganske, F. and Bornscheuerv, U.T. (2005) Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH. Journal of Molecular Catalysis B: Enzymatic, 36, 40-42. doi:10.1016/j.molcatb.2005.08.004
[6] Riva, S., Chopineau, J., Kieboom, A.P.G. and Klibanov, A.M. (1988) Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. Journal of the American Chemical Society, 110, 584-589. doi:10.1021/ja00210a045
[7] Soedjak, H.S. and Spradlin, J.E. (1994) Enzymatic transesterification of sugars in anhydrous pyridine. Biocatalysis and Biotransformation, 11, 241-248. doi:10.3109/10242429408998144
[8] Plou, F.J., Cruces, M.A., Bernable, M., Martin-Loma, M., Parra, J.L. and Ballesteros, A. (1995) Enzymatic synthesis of partially acylated sucrosesa. Annals of the New York Academy of Sciences, 750, 332-337. doi:10.1111/j.1749-6632.1995.tb19976.x
[9] Rich, J.O., Bedell, B.A. and Dordick, J.S. (1995) Controlling enzyme-catalyzed regioselectivity in sugar ester synthesis. Biotechnology and Bioengineering, 45, 426- 434. doi:10.1002/bit.260450507
[10] Yang, Z. and Pan, W.B. (2005) Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme and Microbial Technology, 37, 19-28. doi:10.1016/j.enzmictec.2005.02.014
[11] Kimizuka, N. and Nakashima, T. (2001) Spontaneous self-assembly of glycolipid bilayer membranes in sugar- philic ionic liquids and formation of ionogels. Langmuir, 17, 6759-6761. doi:10.1021/la015523e
[12] Swatloski, R.P., Spear, S.K., Holbrey, J.D. and Rogers, R.D. (2002) Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124, 4974- 4975. doi:10.1021/ja025790m
[13] MacFarlane, D.R., Golding, J., Forsyth, S., Forsyth, M. and Deacon, G.B. (2001) Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chemical Communications, 16, 1430-1431. doi:10.1039/b103064g
[14] Forsyth, S.A., MacFarlane, D.R., Thomson, R.J. and Itz-stein, M.V. (2002) Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chemical Communications, 7, 714-715. doi:10.1039/b200306f
[15] Liu, Q.B., Janssen, M.H.A., Van Rantwijk, F. and Sheldon, R.A. (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chemistry, 7, 39-42. doi:10.1039/b412848f
[16] Lee, S.H. and Lee, S.B. (2005) The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazoliumbased room temperature ionic liquids. Chemical Communications, 27, 3469- 3471. doi:10.1039/b503740a
[17] Itoh, T., Akasaki, E., Kudo, K. and Shirakami, S. (2001) Lipase-catalyzed enantioselective acylation in the ionic liquid solvent system: Reaction of enzyme anchored to the solvent. Chemistry Letters, 3, 262-263. doi:10.1246/cl.2001.262
[18] Forsyth, S.A. and MacFarlane, D.R. (2003) 1-Alkyl-3- methylbenzotriazolium salts: Ionic solvents and electrolytes. Journal of Materials Chemistry, 13, 2451-2456. doi:10.1039/b307931g
[19] Wang, Y.Z., Li, Q.L., Yue, W., Yao, P.J. and Wei, Y.A. (2012) 6-O-(10-undecylenoyl)-D-glucose: Controlled enzymatic synthesis and structure elucidation by 1H and 13C NMR. Advanced Materials Research, 396-398, 1318-1324. doi:10.4028/www.scientific.net/AMR.396-398.1318

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.