Electronic Structure with Rovibrationl and Dipole Moment Study of the NiO Molecule

Abstract

The potential energy curves have been investigated for the 40 lowest electronic states in the 2s+1Λ(±)representation below 25000 cm-1 of the molecule NiO via CASSCF, MRCI (single and double excitation with Davidson correction) and CASPT2 methods. The harmonic frequency ωe , the internuclear distance re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent dipole moment μ have been calculated. By using the canonical functions approach, the eigenvalues Ev, the rotational constant Bv and the abscissas of the turning points rmin and rmax have been calculated for the considered electronic states up to the vibration level v = 12. Eleven electronic states have been studied theoretically here for the first time. The comparison of these values to the theoretical and experimental results available in literature shows a very good agreement.

Share and Cite:

K. Badreddine, N. El-Kork and M. Korek, "Electronic Structure with Rovibrationl and Dipole Moment Study of the NiO Molecule," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 839-849. doi: 10.4236/jmp.2012.38110.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. J. Merer, “Spectroscopy of the Diatomic 3d Transition Metal Oxides,” Annual Review of Physical Chemistry, Vol. 40, 1989, pp. 407-438. doi:10.1146/annurev.pc.40.100189.002203
[2] R. W. Field, D. P. Baldwin, E. J. Hill, M. Li and M. C. McCarthy, “Spectroscopy Beyond Molecular Constants,” Spectrochimica Acta Part A: Molecular Spectroscopy, Vol. 45, No. 1, 1989, pp. 75-89. doi:10.1016/S0584-8539(89)80090-X
[3] F. J. Morin, “Electrical Properties of NiO,” Physical Re- view, Vol. 93, No. 6, 1954, pp. 1199-1204.
[4] D. Adler and J. Feinleib, “Electrical and Optical Proper- ties of Narrow-Band Materials,” Physical Review B, Vol. 2, No. 8, 1970, pp. 3112-3134.
[5] A. J. Bosman and H. J. Van Daal, “Small-Polaron versus Band Conduction in Some Transition-Metal Oxides,” Advances in Physics, Vol. 19, No. 77, 1970, pp. 1-117. doi:10.1080/00018737000101071
[6] P. Pushparajah and S. Radhakrishna, “Transparent Conducting Lithium-Doped Nickel Oxide Thin Films by Spray Pyrolysis Technique,” Journal of Materials Science, Vol. 32, No. 11, 1997, pp. 3001-3006. doi:10.1023/A:1018657424566
[7] A. J. Bosman and Crrevecoeur, “Mechanism of the Electrical Conduction in Li-Doped NiO,” Physical Review, Vol. 144, No. 2, 1965, pp. 763-770.
[8] S. Van Houten, “Semiconduction in LixNi1?xO,” Journal of Physics and Chemistry of Solids, Vol. 17, No. 1-2, 1960, pp. 7-17. doi:10.1016/0022-3697(60)90169-4
[9] R. R. Heikes and W. D. Johnston, “Mechanism of Con- duction in Li—Substituted Transition Metal Oxides,” Journal of Chemical Physics, Vol. 26, No. 3, 1957, pp. 582-588. doi:10.1063/1.1743350
[10] P. Lunkenheimer, A. Loidl, C. R. Ottermann and K. Bange, “Correlated Barrier Hopping in NiO Films,” Physi- cal Review B, Vol. 44, No. 11, 1991, pp. 5927-5930.
[11] S. A. Makhlouf, F. T. Parker, F. E. Spada and A. E. Ber- kowitz, “Magnetic Anomalies in NiO Nanoparticles,” Journal of Applied Physics, Vol. 81, No. 8, 1997, pp. 5561-5564. doi:10.1063/1.364661
[12] J. T. Richardson, D. I. Yiagas, B. Turk, K. Forster and M. V. Twigg, “Origin of Superparamagnetism in Nickel Ox- ide,” Journal of Applied Physics, Vol. 70, No. 11, 1991, pp. 6977-6983. doi:10.1063/1.349826
[13] F. B?dker, M. F. Hansen, C. B. Koch and S. M?rup, “Par- ticle Interaction Effects in Antiferromagnetic NiO Nano- particles,” Journal of Magnetism and Magnetic Materi- als, Vol. 221, No. 1-2, 2000, pp. 32-36. doi:10.1016/S0304-8853(00)00392-9
[14] R. H. Kodama, S. A. Makhlouf and A. E. Berkowitz, “Finite Size Effects in Antiferromagnetic NiO Nanoparticles,” Physical Review Letters, Vol. 79, No. 7, 1997, pp. 1393-1396.
[15] B. Rosen, “Spectra of Diatomic Oxides by the Method of Exploded Wire,” Nature, Vol. 156, 1945, pp. 570-570. doi:10.1038/156570a0
[16] D. W. Green, G. T. Reedy and J. G. Kay, “Matrix-Iso- lated FeO, NiO, and CoO Ground-State Vibrational Fre- quencies,” Journal of Molecular Spectroscopy, Vol. 78, No. 2, 1979, pp. 257-266. doi:10.1016/0022-2852(79)90005-5
[17] V. I. Srdanov and D. O. Harris, “Laser Spectroscopy of NiO: The 3?? ground State,” Journal of Chemical Physics, Vol. 89, No. 5, 1988, pp. 2748-2753. doi:10.1063/1.455711
[18] E. J. Friedman-Hill and R.W. Field, “Analysis of the [16.0]3??-X3?? and [16.0]??-[4.3]3Пi Band Systems of the NiO Molecule,” Journal of Molecular Spectroscopy, Vol. 155, 1992, pp. 259-276. doi:10.1016/0022-2852(92)90516-Q
[19] R. S. Ram and P. F. Bernath, “Fourier Transform Infrared Emission Spectroscopy of a New A3Пi-X3?? System of NiO,” Journal of Molecular Spectroscopy, Vol. 155, 1992, pp. 315-325. doi:10.1016/0022-2852(92)90520-X
[20] S. P. Walch and W. A. Goddard III, “Electronic States of the Nickel Oxide Molecule,” Journal of the American Chemical Society, Vol. 100, No. 5, 1978, pp. 1338-1348. doi:10.1021/ja00473a002
[21] C. W. Bauschlicher Jr., “On the Similarity of the Bonding NiS and NiO,” Chemical Physics, Vol. 93, 1985, pp. 399- 404. doi:10.1016/0301-0104(85)87004-X
[22] C. W. Bauschlicher Jr., C. J. Nelin and P. S. Bagus, “Transition Metal Oxides: CrO, MoO, NiO, PdO, AgO,” Journal of Chemical Physics, Vol. 82, No. 7, 1985, pp. 3265-3277. doi:10.1063/1.448224
[23] M. Dolg, U. Wedig, H. Stoll and H. Preuss, “Ab initi Pseudopotential Study of the First Row Transition Metal Monoxide and Iron Monohydride,“ Journal of Chemical Physics, Vol. 86, No. 4, 1987, pp. 2123-2131. doi:10.1063/1.452110
[24] E. G. Bakalbassis, M. D. Stiakaki, A. C. Tsipis and C. A. Tsipis, “Ground and Low-Lying Excited State Properties of the First-Row Transition-Metal Oxide Diatomics Calculated by an Improved ASED-MO Model,” Chemical Physics, Vol. 205, No. 3, 1996, pp. 389-399. doi:10.1016/0301-0104(95)00417-3
[25] K. Namiki and S. Saito, “Microwave Spectrum of the NiO Radical in the X3??-State,” Chemical Physics Letters, Vol. 252, No. 5-6, 1996, pp. 343-347. doi:10.1016/0009-2614(96)00195-9
[26] H. Y. H. Chan, S. Zou and M. J. Weaver, “Mechanistic Differences between Electrochemical and Gas-Phase Thermal Oxidation of Platinum-Group Transition Metals as Discerned by Surface-Enhanced Raman Spectroscopy,” Journal of Physical Chemistry B, Vol. 103, No. 50, 1999, pp. 11141-11151. doi:10.1021/jp992500o
[27] T. Sasaki, N. Koshizaki and K. M. Beck, “Comparison of Pt/TiO2 Nanocomposite Films Prepared by Sputtering and Pulsed Laser Deposition,” Applied Physics A: Materials Science & Processing, Vol. 69, No. 7, 1999, pp. S771- S774. doi:10.1007/s003390051526
[28] L. Maya, L. Riester, T. Thundat and C. S. Yust, “Charac- terization of Sputtered Amorphous Platinum Dioxide Films,” Journal of Applied Physics, Vol. 84, No. 11, 1998, pp. 6382-6387. doi:10.1063/1.368883
[29] O. L. Shcheka, N. V. Dobrodey and T. B. Emelina, “Quantum Chemical Study of Catalysts Based on Oxides of Transition Metals,” International Journal of Quantum Chemistry, Vol. 50, No. 3, 1994, pp. 181-188. doi:10.1002/qua.560500303
[30] G. Boschloo and A. Hagfeldt, “Spectroelectrochemistry of Nanostructured NiO,” Journal of Physical Chemistry B, Vol. 105, No. 15, 2001, pp. 3039-3044. doi:10.1021/jp003499s
[31] S. C. Su, J. N. Carstens and A. T. Bell, “A Study of the Dynamics of Pd Oxidation and PdO Reduction by H2 and CH4,” Journal of Catalysis, Vol. 176, No. 1, 1998, pp. 125-135. doi:10.1006/jcat.1998.2028
[32] V. Biju and M. Abdul Khadar, “Dielectric Properties of Nanostructured Nickel Oxide,” Journal of Materials Sci- ence, Vol.38, 2003, pp. 4055-4063. doi:10.1023/A:1026131103898
[33] J. R. Mc Bride, G. W. Graham, C. R. Peters and W. H. Weber, “Growth and Characterization of Reactively Sput- tered Thin—Film Platinum Oxides,” Journal of Applied Physics, Vol. 69, No. 3, 1991, pp. 1596-1605. doi:10.1063/1.347255
[34] A. Citra, G. V. Chertihin and L. Andrews, “Reactions of Laser-Ablated Nickel Atoms with Dioxygen. Infrared Spectra and Density Functional Calculations of Nickel Oxides NiO, ONiO, Ni2O2, and Ni2O3, Superoxide NiOO, Peroxide Ni(O2), and Higher Complexes in Solid Argon,” Journal of Physical Chemistry A, Vol. 101, No. 17, 1997, pp. 3109-3118. doi:10.1021/jp970019x
[35] K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Mole- cules,” Van Nostrand Reinhold, New York, 1979.
[36] Saleh N. Abdul Al, Mahmoud Korek and Abdul Rahman Allouche, “Theoretical Electronic Structure of the Low- est-Lying States of the YI Molecule,” Chemical Physics, Vol. 308, No. 1-2, 2005, pp. 1-6. doi:10.1016/j.chemphys.2004.07.032
[37] M. Korek, Y. A. Moghrabi and A. R. Allouche, “Theo- retical Calculation of the Excited States of the KCs Molecule Including the Spin-Orbit Interaction,” Journal of Chemical Physics, Vol. 124, No. 9, 2006, Article ID: 094309. doi:10.1063/1.2173239
[38] M. Korek, S. Bleik and A. R. Allouche, “Theoretical Calculation of the Low Laying Electronic States of the Molecule NaCs with Spin-Orbit Effect,“ Journal of Chemical Physics, Vol. 126, No. 12, 2007, Article ID: 124313. doi:10.1063/1.2710257
[39] F. Taher-Mansour, A. R. Allouche and M. Korek, “Theo- retical Electronic Structure of the Lowest-Lying States of ScCl Molecule below 22,500 cm?1,” Journal of Molecular Spectroscopy, Vol. 248, No. 1, 2008, pp. 61-65. doi:10.1016/j.jms.2007.11.012
[40] M. Korek, S. Kontar, F. Taher-Mansour and A. R. Allouche, “Theoretical Electronic Structure of the Mole- cule ScI,” International Journal of Quantum Chemistry, Vol. 109, No. 2, 2009, pp. 236-242. doi:10.1002/qua.21779
[41] M. Korek, S. Al-Shawa and G. A. Younes, “Theoretical Calculation of the Electronic Structure of the Molecule LiRb Including the Spin-Orbit Interaction,” Journal of Molecular Structure: THEOCHEM, Vol. 899, No. 1-3, 2009, pp. 25-31. doi:10.1016/j.theochem.2008.12.006
[42] M. Korek and S. N. Abdul-Al, “Rovibrational Study and Dipole Moment Calculation of the Molecule YF with Spin-Orbit Interaction,” Chemical Physics, Vol. 355, No. 2-3, 2009, pp. 130-134. doi:10.1016/j.chemphys.2008.11.022
[43] A. Hamdan, M. Korek, “Theoretical Calculation of the Low-Lying Sextet Electronic States of CrF Molecule,” Chemical Physics, Vol. 369, No. 1, 2010, pp. 13-18. doi:10.1016/j.chemphys.2010.01.023
[44] A. Hamdan, and M. Korek, “Theoretical Calculation of the Low-Lying Quartet States of the CrF Molecule,” Ca- nadian Journal of Chemistry, Vol. 89, No. 10, 2011, pp. 1304-13011. doi:10.1139/v11-082
[45] A. Hamdan and M. Korek, “Theoretical Study with Vi- bration-Rotation and Dipole Moment Calculations of Quartet States of the CrCl Molecule,” International Jour- nal of Quantum Chemistry, Vol. 111, No. 12, 2011, pp. 2960-2965. doi:10.1002/qua.22602
[46] J. R. Smith, H. Schlosser, W. Leaf, J. Ferrante and J. H. Rose, “Connection Between Energy Relations of Solids and Molecules,” Physic Review A, Vol. 39, 1989, pp. 514- 517.
[47] M. Korek, “A One Directional Shooting Method for the Computation of Diatomic Centrifugal Distortion Constants,” Computer Physics Communications, Vol. 119, No. 2-3, 1999, pp. 169-178. doi:10.1016/S0010-4655(98)00180-5
[48] W. R. Wadt, P. J. Hay, “Ab initio Effective Core Potentials for Molecular Calculations. Potentials for the Transi- tion Metal Atoms Sc to Hg,” Journal of Chemical Physics, Vol. 82, No. 1, 1985, pp. 270-284. doi:10.1063/1.448799
[49] N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, “Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation,” Canadian Journal of Chemistry, Vol. 70, No. 2, 1992, pp. 560-571. doi:10.1139/v92-079
[50] H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nickla?, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni and T. Thorsteinsson, “MOLPRO Is a Package of Ab initio Programs,”http://www.molpro.net/info/molpro2006.1/molpro_manual
[51] A. R. Allouche, “Gabedit—A Graphical User Interface for Computational Chemistry Softwares,” Journal of Compu- tational Chemistry, Vol. 32, No. 1, 2011, pp. 174-182. doi:10.1002/jcc.21600
[52] T. M. Ramond, G. E. Davico, F. Hellberg, F. Svedberg, P. Salén, P. S?derqvist and W. C. Lineberger, “Photoelec- tron Spectroscopy of Nickel, Palladium, and Platinum Oxide Anions,” Journal of Molecular Spectroscopy, Vol. 216, No. 1, 2002, pp. 1-14. doi:10.1006/jmsp.2002.8669
[53] V. D. Moravec and C. C. Jarrold, “Study of the Low- Lying States of NiO? and NIO Using Anion Photoelec- tron Spectroscopy,” Journal of Chemical Physics, Vol. 108, No. 5, 1998, pp. 1804-18011. doi:10.1063/1.475557
[54] H. Wu and L. S. Wang, “A Study of Nickel Monoxide (NiO), Nickel Dioxide (ONiO), and Ni(O2) Complex by Anion Photoelectron Spectroscopy,” Journal of Chemical Physics, Vol. 107, No. 1, 1997, pp. 16-21. doi:10.1063/1.474362
[55] O. Gropen, U. Wahlgren and L. Pettersson, “Effective Core Potential Calculation on Small Molecules Containing Transition Metal Atoms,” Chemical Physics, Vol. 66, 1982, pp. 459-464. doi:10.1016/0301-0104(82)88047-6
[56] C. W. Bauschlicher Jr. and P. Maitre, “Theoretical Study of the First Transition Row Oxides and Sulfides,” Theoretica Chimica Acta, Vol. 90, No. 2-3, 1995, pp. 189- 203. doi:10.1007/BF01113847
[57] S. C. Chung, S. Krüger, G. Pacchioni and N. R?sch, “Relativistic Effects in the Electronic Structure of the Monoxides Andmonocarbonyls of Ni, Pd, and Pt: Local and Gradient-Corrected Density Functional Calculations,” Journal of Chemical Physics, Vol. 102, 1995, pp. 3693- 3701. doi:10.1063/1.468551
[58] R. L. Gattinger, E. J. Llewellyn and W. F. J. Evans, “Chemiluminescent NiO Emissions: Band Systems and Spectral Simulation,” Canadian Journal of Physics, Vol. 89, No 8, 2011, pp. 869-874. doi:10.1139/p11-068
[59] M. Korek and H. Kobeissi, “Diatomic Centrifugal Distor- tion Constants for a RKR Potential: The Canonical Func- tions Method,” Journal of Molecular Spectroscopy, Vol. 145, No. 2, 1991, pp. 448-450. doi:10.1016/0022-2852(91)90131-S
[60] A. El-Hajj, H. Kobeissi and M. Korek, “SSM: A Set of Subprograms for Calculating Eigenvalues for a Diatomic Molecule Using a Simplified Shooting Method,” Computer Physics Communications, Vol. 74, No. 2, 1992, pp. 297-302. doi:10.1016/0010-4655(93)90099-X
[61] M. Korek and H. Kobeissi, “Highly Accurate Diatomic Centrifugal Distortion Constants for High Orders and High Levels,” Journal of Computational Chemistry, Vol. 13, No. 9, 1992, pp. 1103-1108. doi:10.1002/jcc.540130909
[62] H. Kobeissi and M. Korek, “One Compact Analytic Expression of the Diatomic Centrifugal Distortion Constants to Any Order,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 26, No. 3, 1993, pp. L35-L37. doi:10.1088/0953-4075/26/3/001
[63] M. Korek and H. Kobeissi, “Diatomic Centrifugal Distortion Constants for Large Orders at Any Level: Application to the -I2 State,” Canadian Journal of Chemistry, Vol. 71, No. 3, 1993, pp. 313-317. doi:10.1139/v93-046

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.