Share This Article:

DIA Solitary and Shock Waves in Dusty Multi-Ion Dense Plasma with Arbitrary Charged Dust

Abstract Full-Text HTML XML Download Download as PDF (Size:730KB) PP. 755-761
DOI: 10.4236/jmp.2012.38099    3,863 Downloads   6,769 Views   Citations

ABSTRACT

The nonlinear propagation of the DIA (dust ion-acoustic) waves in multi-ion dense plasma system containing degener- ate electrons, both positive and negative ions, arbitrary charged dust grains has been investigated by employing the reductive perturbation method. The nonlinear waves (solitary and shock waves) have been observed to be formed in case of both positive and negative charged dust grains from the stationary solution of the Korteweg de-Vries (K-dV) equation and Burger’s equation. The fundamental properties of such nonlinear waves have been theoretically analyzed by comparing system potential for both positive and negative dust grains. It has been shown that the basic features of these waves are significantly modified by the positive and negative ions drift speed and polarities of dust grains. The implications of our results in space and laboratory plasmas are briefly discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Zobaer, N. Roy and A. Mamun, "DIA Solitary and Shock Waves in Dusty Multi-Ion Dense Plasma with Arbitrary Charged Dust," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 755-761. doi: 10.4236/jmp.2012.38099.

References

[1] S. Chandrasekhar, “The Density of White Dwarf Stars,” Philosophical Magazine, Vol. 11, No. 7, 1931, pp. 592- 596.
[2] S. Chandrasekhar, “The Maximum Mass of Ideal White Dwarfs? Astrophysical Journal, Vol. 74, No. 1, 1931, pp. 81-82. doi:10.1086/143324
[3] S. Chandrasekhar, “The Highly Collapsed Configurations of a Stellar Mass (Second Paper),” Monthly Notices of the Royal Astronomical Society, Vol. 95, 1935, pp. 226-260.
[4] D. Koester and G. Chanmugam, “Physics of White Dwarf Stars,” Reports on Progress in Physics, Vol. 53, No. 7, 1990, p. 837. doi:10.1088/0034-4885/53/7/001
[5] S. L. Shapiro and S. A. Teukolsky, “Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects,” Wiley, New York, 1983.
[6] E. Garcia-Berro, S. Torres, L. G. Althaus, I. Renedo, P. Lorén-Aguiltar, A. H. Córsico R. D. Rohrmann, M. Salaris and J. Isern, “A White Dwarf Cooling Age of 8 Gyr for NGC 6791 from Physical Separation Processes,” Nature, Vol. 465, 2010, pp. 194-196.
[7] A. A. Mamun and P. K. Shukla, “Nonplanar Dust Ion-Acoustic Solitary and Shock Waves in a Dusty Plasma with Electrons Following a Vortex-Like Distribu- tion,” Physics Letter A, Vol. 374, No. 3, 2010, pp. 472- 457. doi:10.1016/j.physleta.2009.08.071
[8] A. A. Mamun and P. K. Shukla, “Solitary Waves in an Ultrarelativistic Degenerate Dense Plasma,” Physics of Plasmas, Vol. 17, No. 10, 2010, Article ID 104504.
[9] N. Roy, S. Tasnim, and A. A. Mamun, “Solitary Waves and Double Layers in Degenerate Dusty Electron-Posi- tron-Ion Plasma,” Physics of Plasmas, Vol. 19, No. 6, 2012, Article ID 064704. doi:10.1063/1.4725497
[10] F. C. Michel, “Theory of Pulsar Magnetospheres,” Re- views of Modern Physics, Vol. 54, No. 1, 1982, pp. 1-66. doi:10.1103/RevModPhys.54.1
[11] S. L. Shapiro and S. A. Teukolsky, “Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects,” John Wiley and Sons, New York, 1983.
[12] M. Y. Yu, P. K. Shukla and L. Stenflo, “Alfven Vortices in a Strongly Magnetized Electron-Position Plasma”, Astrophysical Journal, Vol. 309, 1986, pp. L63-L65. doi:10.1086/184761
[13] P. K. Shukla, N. N. Rao, M. Y. Yu and N. L. Tsintsadze, “Relativistic Nonlinear Effects in Plasmas Review Articl,” Physics Reports, Vol. 138, No. 1-2, 1986, pp. 1-149. doi:10.1016/0370-1573(86)90157-2
[14] H. R. Miller and P. J. Witta, “Active Galactic Nuclei,” Springer, New York, 1987.
[15] E. Tandberg-Hansen and A. G. Emslie, “The Physics of Solar Flares,” Cambridge University Press, Cambridge, 1988.
[16] L. O. Silva, R. Bingham, J. M. Dawson, J. T. Mendona, and P. K. Shukla, “Neutrino Kinetics in Dense Astro- physical Plasmas,” Physics Review Letter, Vol. 83, No. 14, 1999, pp. 2703-2706. doi:10.1103/PhysRevLett.83.2703
[17] J. Hoyos, A. Reisenegger and J. A. Valdivia, “Magnetic Field Evolution in Neutron Stars: One-Dimensional Multi- Fluid Model,” Astronomy & Astrophysics, Vol. 487, No. 3, 2008, pp. 789-803. doi:10.1051/0004-6361:200809466
[18] V. P. Bliokh and V. V. Yaroshenko, Soviet Astronomy, Vol. 29, 1985, p. 330.
[19] U. de Angelisa, V. Formisanoa and M. Giordanoa, “Ion Plasma Waves in Dusty Plasmas: Halley’s Comet,” Jour- nal of Plasma Physics, Vol. 40, 1988, p. 399.
[20] P. K. Shukla, V. P. Silin, “Low-Frequency Modes in Dusty Plasmas,” Physica Scripta, Vol. 45, No. 5, 1992, p. 504. doi:10.1088/0031-8949/45/5/014
[21] M. J. Rees, “The Very Early Universe,” Cambridge University Press, Cambridge, 1983.
[22] H. R. Miller and P. J. Witta, “Active Galactic Nuclei,” Springer, New York, 1987.
[23] F. C. Michel, “Theory of Pulsar Magnetospheres,” Review of Modern Physics, Vol. 54, No. 1, 1982, pp. 1-66. doi:10.1103/RevModPhys.54.1
[24] E. Tandberg-Hansen and A. G. Emslie, “The Physics of Solar Flares,” Cambridge University Press, Cambridge, 1988.
[25] T. Piran, “Gamma-Ray Bursts and the Fireball Model,” Physics Report, Vol. 314, No. 6, 1999, pp. 575-667. doi:10.1016/S0370-1573(98)00127-6
[26] G. Manfredi, “How to Model Quantum Plasmas,” The Fields Institute Communications Series, Vol. 46, 2005, p. 263.
[27] L. Stenfo, P. K. Shukla and M. Marklund, “New Low- Frequency Oscillations in Quantum Dusty Plasmas,” Europhysics Letter, Vol. 74, No. 5, 2006, p. 844. doi:10.1209/epl/i2006-10032-x
[28] P. K. Shukla, “New Dust in Quantum Plasma,” Physics Letter A, Vol. 352, No. 3, 2006, pp. 242-243. doi:10.1016/j.physleta.2005.11.065
[29] P. K. Shukla and L. Stenfo, “Jeans Instabilities in Quantum Dusty Plasmas,” Physics Letter A, Vol. 355, No. 4-5, 2006, pp. 378-380. doi:10.1016/j.physleta.2006.02.054
[30] G. Brodin and M. Marklund, “Spin Magnetohydrodynamics,” New Journal of Physics, Vol. 9, No. 8, 2007, p. 227. doi:10.1088/1367-2630/9/8/277
[31] G. Brodin and M. Marklund, “Spin Solitons in Magnetized Pair Plasmas,” Physics of Plasmas, Vol. 14, No. 11, 2007, Article ID 112107. doi:10.1063/1.2793744
[32] M. Marklund and G. Brodin, “Dynamics of Spin-1/2 Quantum Plasmas,” Physics Review Letter, Vol. 98, No. 2, 2007, Article ID 025001. doi:10.1103/PhysRevLett.98.025001
[33] M. Marklund, B. Eiasson and P. K. Shukla, “Magnetosonic Solitons in a Fermionic Quantum Plasma,” Phy- sics Review E, Vol. 76, No. 6, 2007, Article ID 067401. doi:10.1103/PhysRevE.76.067401
[34] P. K. Shukla and B. Eliasson, “Nonlinear Aspects of Quantum Plasma Physics” Physics-Uspekhi, Vol. 53, No. 1, 2010, p. 51. doi:10.3367/UFNe.0180.201001b.0055
[35] W. Masood, B. Eiasson and P. K. Shukla, “Electromagnetic Wave Equations for Relativistically Degenerate Quantum Magnetoplasmas,” Physics Review E, Vol. 81, No. 6, 2010, Article ID 066401. doi:10.1103/PhysRevE.81.066401
[36] F. Hass, “Variational Approach for the Quantum Zakharov System,” Physics of Plasmas, Vol. 14, No. 4, 2007, Article ID 042309.
[37] A. Misra and S. Samanta, “Quantum Electron-Acoustic Double Layers in a Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 12, 2008, Article ID 122307. doi:10.1063/1.3040014
[38] A. P. Misra, S. Banerjee, F. Haas, P. K. Shukla, and L. P. G. Assis, “Temporal Dynamics in the One-Dimensional Quantum Zakharov Equations for Plasmas,” Physics of Plasmas, Vol. 17, No. 3, 2010, Article ID 032307. doi:10.1063/1.3356059
[39] S. Maxon and J. Viecelli, “Spherical Solitons,” Physics Review Letter, Vol. 32, No. 1, 1974, pp. 4-6. doi:10.1103/PhysRevLett.32.4
[40] A. Gavrikov, et al., “Heat Transfer in Dusty Plasma,” 32nd EPS Conference on Plasma Physics, Tarragona, 7 June-1 July 2005.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.