Share This Article:

Nonlinear Schroedinger Solitons in Massive Yang-Mills Theory and Partial Localization of Dirac Matter

Abstract Full-Text HTML XML Download Download as PDF (Size:663KB) PP. 637-644
DOI: 10.4236/jmp.2012.38087    3,179 Downloads   5,412 Views   Citations

ABSTRACT

We investigate the classical dynamics of the massive SU(2) Yang-Mills field in the framework of multiple scale perturbation theory. We show analytically that there exists a subset of solutions having the form of a kink soliton, modulated by a plane wave, in a linear subspace transverse to the direction of free propagation. Subsequently, we explore how these solutions affect the dynamics of a Dirac field possessing an SU(2) charge. We find that this class of Yang- Mills configurations, when regarded as an external field, leads to the localization of the fermion along a line in the transverse space. Our analysis reveals a mechanism for trapping SU(2) charged fermions in the presence of an external Yang-Mills field indicating the non-abelian analogue of Landau localization in electrodynamics.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

X. Maintas, C. Tsagkarakis, F. Diakonos and D. Frantzeskakis, "Nonlinear Schroedinger Solitons in Massive Yang-Mills Theory and Partial Localization of Dirac Matter," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 637-644. doi: 10.4236/jmp.2012.38087.

References

[1] A. Smilga, “Lectures on Quantum Chromodynamics,” World Scientific, Singapore, 2001. HUdoi:10.1142/9789812810595U
[2] S. G. Matinyan, G. K. Savvidy and N. G. Ter-Arutyunyan -Savvidy, “Classical Yang—Mills Mechanics. Nonlinear Color Oscillations (in Russian),” Journal of Experimental and Theoretical Physics, Vol. 80, 1981, pp. 830-838.
[3] B. V. Chirikov and D. L. Shepelyanskii, “Stochastic Oscillations of Classical Yang-Mills Fields (in Russian),” Journal of Experimental and Theoretical Physics Letters, Vol. 34, No. 4, 1981, pp. 171-175.
[4] S. G. Matinyan, G. K. Savvidy and N. G. Ter-Arutyunyan -Savvidy, “Stochasticity of Classical Yang-Mills Mechanics and Its Elimination by Using the Higgs Mechanism (in Russian),” Journal of Experimental and Theo- retical Physics Letters, Vol. 34, No. 11, 1981, pp. 613- 616.
[5] S. G. Matinyan, “Dynamical Chaos of Nonabelian Gauge Fields (in Russian),” Fizika Elementarnykh Chastits I Atomnoya Yadra, Vol. 16, 1985, pp. 522-570.
[6] S. G. Matinyan, E. P. Prokhorenko and G. K. Savvidy, “Non-Integrability of Time Dependent Spherically Sym- metric Yang-Mills Equations,” Nuclear Physics B, Vol. 258, No. 2, 1988, pp. 414-428. HUdoi:10.1016/0550-3213(88)90273-8U
[7] S. Coleman, “There Are No Classical Glueballs,” Communications in Mathematical Physics, Vol. 55, No. 2, 1977, pp. 113-116. HUdoi:10.1007/BF01626513U
[8] M. Wellner, “Evidence for a Yang-Mills Fractal,” Physi- cal Review Letters, Vol. 68, No. 12, 1992, pp. 1811-1813. doi:10.1103/PhysRevLett.68.1811U
[9] M. Wellner, “The Road to Fractals in a Yang-Mills Sys- tem,” Physical Review E, Vol. 50, No. 2, 1994, pp. 780- 789. HUdoi:10.1103/PhysRevE.50.780U
[10] M. Frasca, “Strongly Coupled Quantum Field Theory,” Physical Review D, Vol. 73, No. 4, 2006, Article ID 027701. HUdoi:10.1103/PhysRevD.73.049902U
[11] M. Frasca, “Infrared Gluon and Ghost Propagators,” Physics Letters B, Vol. 670, No. 1, 2008, pp. 73-77. HUdoi:10.1016/j.physletb.2008.10.022U
[12] M. Frasca, “Mapping a Massless Scalar Field Theory on a Yang-Mills Theory: Classical Case,” Modern Physics Letters A, Vol. 24, No. 30, 2009, pp. 2425-2432. doi:10.1142/S021773230903165XU
[13] V. Achilleos, F. K. Diakonos, D. J. Frantzeskakis, G. C. Katsimiga, X. N. Maintas, C. E. Tsagkarakis and A. Tsapalis, “A Multi-Scale Perturbative Approach to SU(2)- Higgs Classical Dynamics: Stability of Nonlinear Plane Waves And Bounds of the Higgs Field Mass,” Physical Review D, Vol. 85, No. 2, Article ID 027702. HUdoi:10.1103/PhysRevD.85.027702U
[14] A. Jeffrey and T. Kawahara, “Asymptotic Methods in Nonlinear Wave Theory,” Pitman, London, 1982.
[15] Yu. S. Kivshar and B. Luther-Davies, “Dark Optical Soli- tons: Physics and Applications,” Physics Reports, Vol. 298, No. 2-3, 1998, pp. 81-197. doi:10.1016/S0370-1573(97)00073-2U
[16] D. J. Frantzeskakis, “Dark Solitons in Atomic Bose-Ein- stein Condensates: From Theory to Experiments,” Journal of Physics A-mathematical and Theoretical, Vol. 43, No. 21, 2010.
[17] V. E. Zakharov and A. B. Shabat, “Interaction between Solitons in a Stable Medium (in Russian),” Journal of Experimental and Theoretical Physics, Vol. 64, No. 5, 1973, pp. 1627-1639.
[18] J. D. Bjorken and S. D. Drell, “Relativistic Quantum Mechanics,” McGraw-Hill, New York, 1978
[19] L. D. Landau and E. M. Lifshitz, “Quantum Mechanics,” Pergamon Press, Oxford, 1991.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.