Lithography and Fabrication of Frictional Tiers on Poly(Dimethylsiloxane) Using Atomic Force Microscopy

Abstract

This study investigates controlled micro/nano manipulation of polydimethylsiloxane (PDMS) using Atomic Force Microscopy (AFM). Lithographic results revealed stick-slip phenomena along the slow scan direction. Varying the normal loading force, scan size, scan number and contact conditions allowed the control of certain lithographic outcomes e.g., channel spacing. The PDMS surface experienced significant in-plane deformation in response to the tip-induced lateral force. This displacement increased with increasing loading force, creating greater spacing between channels in the slow scan direction. Simultaneous generation of a lateral displacement in the fast scan direction caused a decrease in channel length with increasing loading force due to an increase in static friction with normal force, resulting in a greater surface relaxation, and shorter track length of dynamic friction. By controlling both the loading force and the number of scans over an area, frictional tiers were produced.

Share and Cite:

G. Watson and J. Watson, "Lithography and Fabrication of Frictional Tiers on Poly(Dimethylsiloxane) Using Atomic Force Microscopy," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 3A, 2012, pp. 233-237. doi: 10.4236/jsemat.2012.223036.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Gerard, A. Chaubey and B. D. Malhotra, “Application of Conducting Polymers to Biosensors,” Biosensors and Bioeletronics, Vol. 17, No. 5, 2002, pp. 345-359. doi:10.1016/S0956-5663(01)00312-8
[2] K. E. Geckeler and B. Müller, “Polymer Materials in Bio-sensors,” Naturwissenschaften, Vol. 80, No. 1, 1993, pp. 18-24. doi:10.1007/BF01139752
[3] M. Rohwerder and A. Michalik, “Conducting Polymers for Corrosion Protection: What makes the Difference between Failure and Success?” Electrochimica Acta, Vol. 53, No. 3, 2007, pp. 1300-1313. doi:10.1016/j.electacta.2007.05.026
[4] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science, Vol. 317, No. 5835, 2007, pp. 222-225. doi:10.1126/science.1141711
[5] C. M. Grozea and G. C. Walker, “Approaches in Designing Non-Toxic Polymer Surfaces to Deter Marine Biofouling,” Soft Matter, Vol. 5, No. 21, 2009, pp. 4088- 4100. doi:10.1039/b910899h
[6] K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini, “Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering,” Bio-materials, Vol. 27, No 18, 2006, pp. 3413-3431. doi:10.1016/j.biomaterials.2006.01.039
[7] D. G. Anderson, D. Putnam, E. B. Lavik, T. A. Mahmood and R. Langer, “Bio-material Microarrays: Rapid, Micro-scale Screening of Polymer-Cell Interaction,” Biomaterials, Vol. 26, No. 23, 2005, pp. 4892-4897. doi:10.1016/j.biomaterials.2004.11.052
[8] C. de las Heras Alarcón, S. Pennadam and C. Alexander, “Stimuli Responsive Polymers for Biomedical Applications,” Chemical Society Reviews, Vol. 34, No. 3, 2005, pp. 276-285. doi:10.1039/b406727d
[9] K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley and L. Ploux, “The Interaction of Cells and Bacteria with Surfaces Structured at the Nanometre Scale,” Acta Biomaterialia, Vol. 6, No. 10, 2010, pp. 3824-3846. doi:10.1016/j.actbio.2010.04.001
[10] A. Mata, A. J. Fleisch-man and S. Roy, “Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems,” Biomedical Microdevices, Vol. 7, No. 4, 2005, pp. 281-293. doi:10.1007/s10544-005-6070-2
[11] H. Tokuhisa and P. T. Hammond, “Nonlithographic Micro- and Nanopatterning of TiO2 Using Polymer Stamped Molecular Templates,” Lang-muir, Vol. 20, No. 4, 2004, pp 1436-1441. doi:10.1021/la030191u
[12] G. M. Whitesides, “The Origins and the Future of Microfluidics,” Nature, Vol. 442, No. 7101, 2006, pp. 368-373. doi:10.1038/nature05058
[13] G. M.Whitesides, E. Ostuni, S. Takayama, X. Jiang and D. E. Ingber, “Soft Lithography in Biology and Biochemistry,” Annual Review of Biomedical Engineering, Vol. 3, 2001, pp. 335-373. doi:10.1146/annurev.bioeng.3.1.335
[14] J. P. Cleveland, S. Manne, D. Bocek and P. K. Hansma, “A Nondestructive Method For Determining The Spring Constant Of Cantilevers For Scanning Force Microscopy”, Review of Scientific Instru-ments, Vol. 64, No. 3, 1993, pp. 403-405. doi:10.1063/1.1144209
[15] C. T. Gibson, G. S. Watson and S. Myhra, “Scanning Force Microscopy—Calibration Procedures for ‘Best Practice’,” Scanning, Vol. 19, No. 8, 1997, pp. 564-581. doi:10.1002/sca.4950190806
[16] G. Haugstad, W. L. Gladfelter and R. R. Jones, “Scanning force Microscopy Characterization of Viscoelastic Deformations Induced by Precontact Attraction in a Low Cross-Link Density Gelatine Film,” Langmuir, Vol. 14, No. 14, 1998, pp. 3944-3953. doi:10.1021/la9713107
[17] R. H. Schmidt, G. Haugstad and W. L. Gladfelter, “Scan Induced Patterning and the Glass Transition in Polymer Films: Temperature and Rate Dependence of Plastic Deformation at the Nanometer Length Scale,” Langmuir, Vol. 19, No. 24, 2003, pp. 10390-10398. doi:10.1021/la0348564

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.