Application, Evaluation, and Process Analysis of the US EPA’s 2002 Multiple-Pollutant Air Quality Modeling Platform

Abstract

A multiple-pollutant version of CMAQ v4.6 (i.e., CMAQ-MP) has been applied by the US EPA over continental US in 2002 to demonstrate the model’s capability in reproducing the long-term trends of ambient criteria and hazardous air pollutants (CAPs and HAPs, respectively) in support of regulatory analysis for air quality management. In this study, a comprehensive model performance evaluation for the full year of 2002 is performed for the first time for CMAQ-MP using the surface networks and satellite measurements. CMAQ-MP shows a comparable and improved performance for most CAPs species as compared to an older version of CMAQ that did not treat HAPs and used older versions of national emission inventories. CMAQ-MP generally gives better performance for CAPs than for HAPs. Max 8-h ozone (O3) mixing ratios are well reproduced in the O3season. The seasonal-mean performance is fairly good for fine particulate matter (PM2.5), sulfate (SO42-), and mercury (Hg) wet deposition and worse for other CAPs and HAPs species. The reasons for the model biases may be attributed to uncertainties in emissions for some species (e.g., ammonia (NH3), elemental carbon (EC), primary organic aerosol (POA), HAPs), gas/aerosol chemistry treatments (e.g., secondary or- ganic aerosol formation, meteorology (e.g., overestimate in summer precipitation), measurements (e.g., NO3-), and the use of a coarse grid resolution. CMAQ cannot well reproduce spatial and seasonal variations of column variables except for nitrogen dioxide (NO2) and the ratio of column mass of HCHO/NO2. Possible reasons include inaccurate seasonal allocation or underestimation of emissions, inaccurate BCONs at higher altitudes, lack of model treatments such as mineral dust or plume-in-grid process, and limitations and errors in satellite data retrievals. The process analysis results show that in addition to transport, gas chemistry or aerosol/emissions play the most important roles for O3 or PM2.5, respectively. For most HAPs, emissions are important sources and cloud processes are a major sink. Simulated P H2 H O2/P HNO3 and HCHO/NO2 indicate VOC-limited chemistry in major urban areas throughout the year and in other non-urban areas in winter, but NOx-limited chemistry in most areas in summer.

Share and Cite:

K. Wang and Y. Zhang, "Application, Evaluation, and Process Analysis of the US EPA’s 2002 Multiple-Pollutant Air Quality Modeling Platform," Atmospheric and Climate Sciences, Vol. 2 No. 3, 2012, pp. 254-289. doi: 10.4236/acs.2012.23025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. C. McCarthy, H. R. Hafner and S. A. Montzka, “Background Concentrations of 18 Air Toxics for North America,” Journal of the Air & Waste Management Association, Vol. 56, No. 1, 2006, pp. 3-11. doi:10.1080/10473289.2006.10464436
[2] R. Scheffe, B. Hubbell, T. Fox, V. Rao and W. Pennell, “The Rationale for a Multipollutant, Multimedia Air Quality Management Framework,” Environmental Managers, 2007, pp. 14-20.
[3] US EPA, “Air Quality Modeling Platform for the Ozone National Ambient Air Quality Standard Final Rule Regulatory Impact Analysis, Office of Air Quality Planning and Standards,” EPA, Research Triangle Park, EPA-454/ R-08-003, 2008.
[4] D. W. Byun and K. L. Schere, “Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multi-Scale Air Quality (CMAQ) Modeling System,” Applied Mechanics Reviews, Vol. 59, No. 2, 2006, pp. 51-77. doi:10.1115/1.2128636
[5] Y. Zhang, B. Pun, S.-Y. Wu, K. Vijayaraghavan and C. Seigneur, “Application and Evaluation of Two Air Quality Models for Particulate Matter for a Southeastern US Episode,” Journal of the Air & Waste Management Association, Vol. 54, No. 12, 2004, pp. 1478-1493. doi:10.1080/10473289.2004.10471012
[6] Y. Zhang, P. Liu, B. Pun and C. Seigneur, “A Comprehensive Performance Evaluation of MM5-CMAQ for the Summer 1999 Southern Oxidants Study Episode—Part I: Evaluation Protocols, Databases, and Meteorological Predictions,” Atmospheric Environment, Vol. 40, No. 26, 2006, pp. 4825-4838. doi:10.1016/j.atmosenv.2005.12.043
[7] Y. Zhang, J.-P. Huang, D. K. Henze and J. H. Seinfeld, “Role of Isoprene in Secondary Organic Aerosol Formation on a Regional Scale,” Journal of Geophysical Research, Vol. 112, 2007, Article ID D20207. doi:10.1029/2007JD008675
[8] Y. Zhang, K. Vijayaraghavan, X.-Y. Wen, H. E. Snell and M. Z. Jacobson, “Probing into Regional O3 and PM Pollution in the US: Part I: A 1-Year CMAQ Simulation and Evaluation Using Surface and Satellite Data,” Journal of Geophysical Research, Vol. 114, 2009, Article ID D22304. doi:10.1029/2009JD011898
[9] Y. Zhang, X.-Y. Wen, K. Wang, K. Vijayaraghavan and M. Z. Jacobson, “Probing into Regional O3 and PM Pollution in the US: Part II: An Examination of Formation Mechanisms through a Process Analysis Technique and Sensitivity Study,” Journal of Geophysical Research, Vol. 114, 2009, Article ID D22305. doi:10.1029/2009JD011900
[10] B. Eder and S. Yu, “A Performance Evaluation of the 2004 Release of Models-3 CMAQ,” Atmospheric Environment, Vol. 40, No. 26, 2006, pp. 4811-4824. doi:10.1016/j.atmosenv.2005.08.045
[11] T. W. Tesche, R. Morris, G. Tonnesen, D. McNally, J. Boylan and P. Brewer, “CMAQ/CAMx Annual 2002 Performance Valuation over the Eastern US,” Atmospheric Environment, Vol. 40, No. 26, 2006, pp. 4906-4919. doi:10.1016/j.atmosenv.2005.08.046
[12] K. W. Appel, A. B. Gilliland, G. Sarwar and R. C. Gilliam, “Evaluation of the Community Multiscale Air Quality (CMAQ) Model Version 4.5: Sensitivities Impacting Model Performance: Part I—Ozone,” Atmospheric Environment, Vol. 41, No. 40, 2007, pp. 9603-9615. doi:10.1016/j.atmosenv.2007.08.044
[13] K. W. Appel, P. V. Bhave, A. B. Gilliland, G. Sarwar and S. J. Roselle, “Evaluation of Community Multiscale Air Quality (CMAQ) Model Version 4.5: Sensitivities Impacting Model Performance: Part II—Particulate Matter,” Atmospheric Environment, Vol. 42, No. 24, 2008, pp. 6057- 6066.
[14] S.-Y. Wu, S. Krishnan, Y. Zhang and V. Aneja, “Modeling Atmospheric Transport and Fate of Ammonia in North Carolina—Part I: Evaluation of Meteorological and Chemical Predictions,” Atmospheric Environment, Vol. 42, No. 14, 2008, pp. 3419-3436. doi:10.1016/j.atmosenv.2007.04.031
[15] K. Wang, Y. Zhang, C. Jang, S. Phillips and B. Wang, “Modeling Intercontinental Air Pollution Transport over the Trans-Pacific Region in 2001 Using Community Multiscale Air Quality Modeling System,” Journal of Geophysical Research, Vol. 114, 2009, Article ID D04307. doi:10.1029/2008JD010807
[16] C. J. Lin, P. Pongprueksa, S. E. Lindberg, S. O. Pehkonen, D. Byun and C. Jang, “Scientific Uncertainties in Atmospheric Mercury Models I: Model Science Evaluation,” Atmospheric Environment, Vol. 40, No. 16, 2006, pp. 2911- 2928.
[17] P. Pongprueksa, C. J. Lin, S. E. Lindberg, C. Jang, T. Braverman, O. R. Bullock, T. C. Ho and H. Chu, “Scientific Uncertainties in Atmospheric Mercury Models III: Boundary and Initial Conditions, Model Grid Resolution, and Hg(II) Reduction Mechanism,” Atmospheric Environment, Vol. 42, No. 8, 2008, pp. 1828-1845. doi:10.1016/j.atmosenv.2007.11.020
[18] O. R. Bullock, et al., “An Analysis of Simulated Wet Deposition of Mercury from the North American Mercury Model Intercomparison Study,” Journal of Geophysical Research, Vol. 114, 2009, Article ID D08301. doi:10.1029/2008JD011224
[19] L. A. Díaz-Robles, J. S. Fu, G. D. Reed and A. J. DeLucia, “Seasonal Distribution and Modeling of Diesel Particulate Matter in the Southeast US,” Environment International, Vol. 35, No. 6, 2009, pp. 956-964. doi:10.1016/j.envint.2009.04.005
[20] ENVIRON, “Development, Application, and Evaluation of an Advanced Photochemical Air Toxics Modeling System,” ENVIRON, CRC Project A-42-2, Novato, 2002.
[21] W. T. Hutzell and D. J. Luecken, “Fate and Transport of Emissions for Several Trace Metals over the United States,” Science of the Total Environment, Vol. 396, No. 2-3, 2008, pp. 164-179. doi:10.1016/j.scitotenv.2008.02.020
[22] O. R. Bullock and K. A. Brehme, “Atmospheric Mercury Simulation with CMAQ Model: Formulation Description and Analysis of Wet Deposition Results,” Atmospheric Environment, Vol. 36, No. 13, 2002, pp. 2135-2146. doi:10.1016/S1352-2310(02)00220-0
[23] D. J. Luecken, W. T. Hutzell and G. L. Gipson, “Development and Analysis of Air Quality Modeling Simulations for Hazardous Air Pollutants,” Atmospheric Environment, Vol. 40, No. 26, 2006, pp. 5087-5096. doi:10.1016/j.atmosenv.2005.12.044
[24] G. Yarwood, S. Rao, M. Yocke and G. Z. Whitten, “Updates to the Carbon Bond Mechanism: CB05,” Report to the US Environmental Protection Agency, RT-04-00675, 2005.
[25] S. Kemball-Cook, Y. Jia, C. Emery, R. Morris, Z. Wang and G. Tonnesen, “Annual 2002 MM5 Meteorological Modeling to Support Regional Haze Modeling of the Western United States,” Report for the Western Regional Air Partnership (WRAP), Denver, 2005.
[26] M. A. Witt, R. Baker and T. D. Jickells, “Atmospheric Trace Metals over the Atlantic and South Indian Oceans: Investigation of Metal Concentrations and Lead Isotope Ratios in Coastal and Remote Marine Aerosols,” Atmospheric Environment, Vol. 40, No. 28, 2006, pp. 5435-5451. doi:10.1016/j.atmosenv.2006.04.041
[27] US EPA, “Guidance on the Use of Models and other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze,” The US Environmental Protection Agency, Research Triangle Park, EPA-454/B-07-002, 2007.
[28] C. Seigneur, K. Lohman and B. Pun, “Critical Review of Air Toxics Modeling Current Status and Key Issues,” CRC A-42-Phase I, Coordinating Research Council, Inc., Alpharetta, 2002.
[29] L. K. Emmons, D. P. Edwards, M. N. Deeter, J. C. Gille, T. Campos, P. Nedelec, P. Novelli and G. Sachse, “Measurements of Pollution in The Troposphere (MOPITT) Validation through 2006,” Atmospheric Chemistry and Physics, Vol. 9, No. 5, 2009, pp. 1795-1803. doi:10.5194/acp-9-1795-2009
[30] G. J. Velders, M. C. Granier, R. W. Portmann, K. Pfeilsticker, M. Wenig, T. Wagner, U. Platt, A. Richter and J. P. Burrows, “Global Tropospheric NO2 Column Distributions: Comparing the Three-Dimensional Model Calculations with GOME Measurements,” Journal of Geophysical Research, Vol. 106, No. D12, 2001, pp. 12643-12666. doi:10.1029/2000JD900762
[31] J. Fishman, A. E. Wozniak and J. K. Creilson, “Global Distribution of Tropospheric Ozone from Satellite Measurements Using the Empirically Corrected Tropospheric Ozone Residual Technique: Identification of the Regional Aspects of Air Pollution,” Atmospheric Chemistry and Physics, Vol. 3, No. 4, 2003, pp. 893-907. doi:10.5194/acp-3-893-2003
[32] L. A. Remer, et al., “The MODIS Aerosol Algorithm, Products, and Validation,” Journal of Atmospheric Sciences, Vol. 62, No. 4, 2005, pp. 947-973. doi:10.1175/JAS3385.1
[33] P. Dolwick, R. Gilliam, L. Reynolds and A. Huffman, “Regional and Local-Scale Evaluation of 2002 MM5 Meteorological Fields for Various Air Quality Modeling Applications,” The 6th Annual CMAS Conference, Chapel Hill, 1-3 October 2007.
[34] R. E. Morris, B. Koo, D. McNally, T. W. Tesche and G. Tonnesen, “Application of Multiple Models to Simulation Fine Particulate in the Southeastern US,” National RPO Modeling Meeting, Denver, 25-26 May 2004.
[35] R. C. Gilliam, C. Hogrefe and S. T. Rao, “New Methods for Evaluating Meteorological Models Used in Air Quality Applications,” Atmospheric Environment, Vol. 40, No. 26, 2006, pp. 5073-5086. doi:10.1016/j.atmosenv.2006.01.023
[36] S. C. Yu, R. Mathur, K. Schere, D. Kang, J. Pleim and T. L. Otte, “A Detailed Evaluation of the Eta-CMAQ Forecast Model Performance for O3, Its Related Precursors, and Meteorological Parameters during the 2004 ICARTT Study,” Journal of Geophysical Research, Vol. 112, 2007, Article ID D12S14. doi:10.1029/2006JD007715
[37] D. J. Luecken, S. Phillips, G. Sarwar and C. Jang, “Effects of Using the CB05 vs. SAPRC99 vs. CB4 Chemical Mechanism on Model Predictions: Ozone and Gas-Phase Photochemical Precursor Concentrations,” Atmospheric Environment, Vol. 42, No. 23, 2008, pp. 5805-5820. doi:10.1016/j.atmosenv.2007.08.056
[38] S. Yu, R. Mathur, G. Sarwar, D. Kwang, D. Tong, G. Pouliot and J. Pleim, “Eta-CMAQ Air Quality Forecasts for O3 and Related Species Using Three Different Photochemical Mechanisms (CB4, CB05, SAPRC-99): Comparisons with Measurements during the 2004 ICARTT Study,” Atmospheric Chemistry and Physics, Vol. 10, No. 6, 2010, pp. 3001-3025.
[39] Y. Zhang, Y.-S. Chen, G. Sarwar and K. Schere, “Impact of Gas-Phase Mechanisms on WRF/Chem Predictions: Mechanism Implementation and Comparative Evaluation,” Journal of Geophysical Research, Vol. 117, 2011, Article ID D01301. doi:10.1029/2011JD015775
[40] C. Luo, Y. Wang, S. Mueller and E. Knipping, “Evaluation of sulfate Simulations Using CMAQ Version 4.6,” The 8th Annual CMAS Conference, Chapel Hill, 19-21 October 2009.
[41] R. E. Morris, D. E. McNally, T. W. Tesche, G. Tonnesen, J. W. Boylan and P. Brewer, “Preliminary Evaluation of the Community Multiscale Air Quality Model for 2002 over the Southeastern United States,” Journal of the Air & Waste Management Association, Vol. 55, No. 11, 2005, pp. 1694-1708. doi:10.1080/10473289.2005.10464765
[42] R. W. Pinder, P. J. Adams, S. N. Pandis and A. B. Gilliland, “Temporally Resolved Ammonia Emission Inventories: Current Estimates, Evaluation Tools, and Measurement Needs,” Journal of Geophysical Research, Vol. 111, 2006, Article ID D16310. doi:10.1029/2005JD006603
[43] V. A. Karydis, A. P. Tsimpidi and S. N. Pandis, “Evaluation of a Three-Dimensional Chemical Transport Model (PMCAMx) in the Eastern United States for All Four Seasons,” Journal of Geophysical Research, Vol. 112, 2007, Article ID D14211. doi:10.1029/2006JD007890
[44] C. Wiedinmyer, B. Quayle, C. Geron, A. Belote, D. Mc- Kenzie, X. Zhang, S. O’Neill and K. Klos Wynne, “Estimating Emissions from Fires in North America for Air Quality Modeling,” Atmospheric Environment, Vol. 40, No. 19, 2006, pp. 3419-3432. doi:10.1016/j.atmosenv.2006.02.010
[45] B. Roy, G. A. Pouliot, A. Gilliland, T. Pierce, S. Howard, P. V. Bhave and W. Benjey, “Refining Fire Emissions for Air Quality Modeling with Remotely Sensed Fire Counts: A Wildfire Case Study,” Atmospheric Environment, Vol. 41, No. 3, 2007, pp. 655-665. doi:10.1016/j.atmosenv.2006.08.037
[46] P. K. Gbor, D. Wen, F. Meng, F. Yang and J. J. Sloan, “Modeling of Mercury Emission, Transport and Deposition in North America,” Atmospheric Environment, Vol. 41, No. 6, 2007, pp. 1135-1149. doi:10.1016/j.atmosenv.2006.10.005
[47] J. O. Bash, “Description and Initial Simulation of a Dynamic Bidirectional Air Surface Exchange Model for Mercury in Community Multiscale Air Quality (CMAQ) Model,” Journal of Geophysical Research, Vol. 115, 2010, Article ID D06305. doi:10.1029/2009JD012834
[48] C. J. Lin, S. E. Lindberg, T. C. Ho and C. Jang, “Development of a Processor in BEIS3 for Estimating Vegetative Mercury Emission in the Continental United States,” Atmospheric Environment, Vol. 39, No. 39, 2005, pp. 7529-7540.
[49] K. Gardfeldt and M. Jonsson, “Is Bimolecular Reduction of Hg(II) Complexes Possible in Aqueous Systems of Environmental Importance,” Journal of Physical Chemistry A, Vol. 107, No. 22, 2003, pp. 4478-4482. doi:10.1021/jp0275342
[50] D. Obrist, E. Tas, M. Peleg, V. Matveev, X. Fain, D. Asaf and M. Luria, “Bromine-Induced Oxidation of Mercury in the Mid-Latitude Atmosphere,” Nature Geoscience, Vol. 4, 2010, pp. 22-26. doi:10.1038/ngeo1018
[51] J. Ching, T. Pierce, T. Palma and W. Hutzell, “Application of Fine Scale Air Toxics Modeling with CMAQ and HAPEM5,” The 3rd Annual CMAS Conference, Chapel Hill, 18-20 October 2004.
[52] V. Isakov, J. S. Irwin and J. Ching, “Using CMAQ for Exposure Modeling and Characterizing the Subgrid Variability for Exposure Estimates,” Journal of Applied Meteorology, Vol. 46, No. 9, 2007, pp. 1354-1371. doi:10.1175/JAM2538.1
[53] J. M. Logue, K. E. Huff-Hartz, A. T. Lamb, N. M. Donahue and A. L. Robinson, “High Time-Resolved Measurements of Organic Air Toxics in Different Source Regimes,” Atmospheric Environment, Vol. 43, No. 39, 2009, pp. 6205-6217. doi:10.1016/j.atmosenv.2009.08.041
[54] S. De Marchi and J. T. Hamilton, “Assessing the Accuracy of Self Reported Data: An Evaluation of the Toxics Release Inventory,” Journal of Risk and Uncertainty, Vol. 32, No. 1, 2006, pp. 57-76. doi:10.1007/s10797-006-6666-3
[55] G. C. Pratt, Y. Chun, D. Bock, J. L. Adgate, G. Ramachandran, T. H. Stock, M. Morandi and K Sexton, “Comparing Air Dispersion Model Predictions with Measured Concentrations of VOCs in Urban Communities,” Envi- ronmental Science and Technology, Vol. 38, No. 7, 2004, pp. 1949-1959. doi:10.1021/es030638l
[56] D. Q. Tong and D. L. Mauzerall, “Spatial Variability of Summertime Tropospheric Ozone over the Continental United States: Implications of an Evaluation of the CMAQ Model,” Atmospheric Environment, Vol. 40, No. 17, 2006, pp. 3041-3056. doi:10.1016/j.atmosenv.2005.11.058
[57] I. Stajner, et al., “Assimilated Ozone from EOS-Aura: Evaluation of the Tropopause Region and Tropospheric Columns,” Journal of Geophysical Research, Vol. 113, 2008, Article ID D16S32. doi:10.1029/2007JD008863
[58] C. L. Heald, et al., “Asian Outflow and Trans-Pacific Transport of Carbon Monoxide and Ozone Pollution: An Integrated Satellite, Aircraft, and Model Perspective,” Journal of Geophysical Research, Vol. 108, 2003, pp. 4804-4816. doi:10.1029/2003JD003507
[59] R. V. Martin, D. J. Jacob, K. Chance, T. P. Kurosu, P. I. Palmer and M. J. Evans, “Global Inventory of Nitrogen Oxide Emissions Constrained by Space-Based Observations of NO2 Columns,” Journal of Geophysical Research, Vol. 108, No. D17, 2003, pp. 4537-4548. doi:10.1029/2003JD003453
[60] K. F. Boersma, H. J. Eskes and E. J. Brinksma, “Error Analysis for Tropospheric NO2 Retrieval from Space,” Journal of Geophysical Research, Vol. 109, 2004, Article ID D04311. doi:10.1029/2003JD003962
[61] T. P. C. van Noije, et al., “Multi-Model Ensemble Simulations of Tropospheric NO2 Compared with GOME Retrievals for the Year 2000,” Atmospheric Chemistry and Physics, Vol. 6, No. 10, 2006, pp. 2943-2979. doi:10.5194/acp-6-2943-2006
[62] Y. Choi, Y. Wang, T. Zeng, D. Cunnold, E.-S. Yang, R. Martin, K. Chance, V. Thouret and E. Edgerton, “Springtime Transitions of NO2, CO, and O3 over North America: Model Evaluation and Analysis,” Journal of Geophysical Research, Vol. 113, 2008, Article ID: D20311. doi:10.1029/2007JD009632
[63] T. Stavrakou, J.-F. Müller, I. De Smedt, M. Van Roozendael, G. R. van der Werf, L. Giglio and A. Guenther, “Evaluating the Performance of Pyrogenic and Biogenic Emission Inventories against One Decade of Space-Based Formaldehyde Columns,” Journal of Physical Chemistry, Vol. 9, No. 3, 2009, pp. 1037-1060. doi:10.5194/acp-9-1037-2009
[64] K. V. Chance, P. I. Palmer, R. J. D. Spurr, R. V. Martin, T. P. Kurosu and D. J. Jacob, “Satellite Observations of Formaldehyde over North America from GOME,” Geophysical Research Letters, Vol. 27, No. 21, 2000, pp. 3461- 3464. doi:10.1029/2000GL011857
[65] Y. J. Kaufman, A. Smirnov, B. N. Holben and O. Dubovik, “Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties,” Geo- physical Research Letters, Vol. 28, No. 17, 2001, pp. 3251-3254. doi:10.1029/2001GL013312
[66] E. Drury, D. J. Jacob, J. Wang, R. J. D. Spurr and K. Chance, “Improved Algorithm for MODIS Satellite Retrievals of Aerosol Optical Depths over Western North America,” Journal of Geophysical Research, Vol. 113, 2008, Article ID D16204. doi:10.1029/2007JD009573
[67] Y. Zhang, K. Vijayaraghavan and C. Seigneur, “Evaluation of Three Probing Techniques in a Three-Dimensional Air Quality Model,” Journal of Geophysical Research, Vol. 110, 2005, Article ID D02305. doi:10.1029/2004JD005248
[68] X.-H. Liu, Y. Zhang, J. Xing, Q. Zhang, K. Wang, D. G. Streets, C. J. Jang, W.-X. Wang and J.-M. Hao, “Understanding of Regional Air Pollution over China Using CMAQ: Part II. Process Analysis and Ozone Sensitivity to Precursor Emissions,” Atmospheric Environment, Vol. 44, 2010, pp. 3719-3727. doi:10.1016/j.atmosenv.2010.03.036
[69] S. Yu, R. Mathur, K. Schere, D. Kang and D. Tong, “A Study of the Ozone Formation by Ensemble Back Trajectory-Process Analysis Using the Eta-CMAQ Forecast Model over the Northeastern US during the 2004 ICARTT Period,” Atmospheric Environment, Vol. 43, No. 2, 2009, pp. 355-363. doi:10.1016/j.atmosenv.2008.09.079
[70] P. Liu, Y. Zhang, S. Yu and K. Schere, “Use of a Process Analysis Tool for Diagnostic Study on Fine Particulate Matter Predictions in the US—Part II: Analyses and Sensitivity Simulations,” Atmospheric Pollution Research, Vol. 2, 2011, pp. 61-71. doi:10.5094/APR.2011.008
[71] G. S. Tonnesen and R. L. Dennis, “Analysis of Radical Propagation Efficiency to Assess Ozone Sensitivity to Hydrocarbons and NOX 1. Local Indicators of Instantaneous Odd Oxygen Production Sensitivity,” Journal of Geophysical Research, Vol. 105, No. D7, 2000, pp. 9213- 9225. doi:10.1029/1999JD900371
[72] R. V. Martin, A. M. Fiore and A. Van Donkelaar, “Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions,” Geophysical Research Letters, Vol. 31, 2004, Article ID L06120. doi:10.1029/2004GL019416
[73] B. Duncan, Y. Yoshida, C. Retscher, K. Pickering and E. Celarier, “The Sensitivity of US Surface Ozone Formation to NOX and VOCs as Viewed from Space,” The 8th Annual CMAS Conference, Chapel Hill, 19-21 October 2009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.