Difficulties in the Use of Ground Bacterial Cellulose (BC) as Reinforcement of Polylactid Acid (PLA) Using Melt-Mixing and Extrusion Technologies

Abstract

Bacterial cellulose (BC) was ground to make the material suitable for compounding with polylactid acid (PLA). The content of BC in PLA was changed between 5 and 20 wt%. By increasing the BC content of the composite DSC measurements showed an increase of crystallinity (χ c ). Annealing at 90?C resulted in a further increase of χ c . Analysis of the dynamic mechanical behavior showed a sharp decline of the storage module (G’) above the glass transition temperature (T g ) while such a sharp decline did not occur for annealed samples. This indicates that the stiffness of PLA even above T g can be improved by BC and annealing.

Share and Cite:

K. Ganß, A. Nechwatal, K. Frankenfeld and K. Schlufter, "Difficulties in the Use of Ground Bacterial Cellulose (BC) as Reinforcement of Polylactid Acid (PLA) Using Melt-Mixing and Extrusion Technologies," Open Journal of Composite Materials, Vol. 2 No. 3, 2012, pp. 97-103. doi: 10.4236/ojcm.2012.23011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Klemm, B. Heublein, H. P. Fink and A. Bohn, “Cellulose: Faszinierendes Biopolymer und nachhaltiger Rohst- off,” Angewandte Chemie, Vol. 107, No. 22, 2005, pp. 3422-3458. doi:10.1002/ange.200460587
[2] R. Kumar, S. Singh and O. V. Singh, “Bioconversion of Lignocellulosic Biomass: Biochemical and Molecular Perspectives,” Journal of Industrial Microbiology and Biotechnology, Vol. 35, No. 5, 2008, pp. 377-391.
[3] J. Kim and S. Yun, “Discovery of Cellulose as Smart Ma- terial,” Macromolecules, Vol. 39, No. 12. 2006, pp. 4202- 4206. doi:10.1021/ma060261e
[4] N. Bilgicli, S. Ibanogli and E. N. Herken, “Effect of Dietary Fibre Addtion on the Selected Nutritional Properties of Cookies,” Journal of Food Engineering, Vol. 78, No. 1, 2007, pp. 86-89.
[5] S. Richter, N. Eikelenberg, M. Magnani and J. Müssig, “Sisal as a Reinforcing Agent,” Kunststoffe International, No. 6, 2010, pp. 50-53.
[6] M. Magnani, “Renewable Materials in Ford Motor Company’s Vehicles,” Proceedings of 8th Global WPC and Natural Fibre Composites Congress and Exhibition, Stuttgart, 22-23 June 2010, pp. B8-1-B8-11.
[7] U. Geyer, T. Heinze, A. Stein, D. Klemm, D. Schumann and H. P. Schmauder, “Formation, Derivatization and Applications of Bacterial Cellulose,” International Journal of Biological Macromolecules, Vol. 16, No. 6, 1994, pp. 343-347. doi:10.1016/0141-8130(94)90067-1
[8] A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg and P. Gatenholm, “Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage,” Biomaterials, Vol. 26. No. 4, 2005, pp. 419- 431. doi:10.1016/j.biomaterials.2004.02.049
[9] D. Klemm, D. Schumann, U. Udhardt and S. Marsch, “Bacterial Synthesized Cellulose—Artificial Blood Vessels for Microsurgery,” Progress in Polymer Science, Vol. 26, No. 9, 2006, pp. 1561-1603. doi:10.1016/S0079-6700(01)00021-1
[10] H. P. Schmauder, M. Ludwig, K. Frankenfeld, M. Hornung and A. Mülverstedt, “Bakteriencellulose—Ein Interessantes Biomaterial,” BioForum, Vol. 23, No. 7, 2000, pp. 484-486.
[11] S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo and H. Yano, “Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites: Depence on Acetyl-Group DS,” Biomacromolecules, Vol. 8, No. 6, 2007, pp. 1973-1978. doi:10.1021/bm070113b
[12] A. Delille, A. Mantalaris and A. Bismarck, “Influence of Properties of the Bacterial Cellulose Coating on Natural Fiber Composites,” Proceedings of 8th Global WPC and Natural Fibre Composites Congress and Exhibition, Stuttgart, 22-23 June 2010, pp. A20-1-A20-5.
[13] S. Gea, E. Bilotti, C. T. Reynolds, N. Soykeabkeaw and T. Peijs, “Bacterial Cellulose-Poly(Vinyl Alcohol) Nancomposites Prepared by an in-Situ Process,” Material Letters, Vol. 64, No. 8, 2010, pp. 901-904.
[14] E. Trovatti, L. Olivera, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, J. J. C. Cruz and A. Gandini, “Novel Bacterial Cellulose Acrylic Resin Nanocomposites,” Composite Science and Technology, Vol. 70, No. 7, 2010, pp. 1148- 1153. doi:10.1016/j.compscitech.2010.02.031
[15] K. Y. Lee, J. J. Blaker and A. Bismarck, “Surface Functionalisation of Bacterial Cellulose as the Route to produce Green Polylactide Nanocomposites with Improved Properties,” Composite Science and Technology, Vol. 69, No. 15-16, 2009, pp. 2327-2333. doi:10.1016/j.compscitech.2009.08.016
[16] L. Suryanegara, A. N. Nakagaito and H. Yano, “The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose-Reinforced PLA Composites,” Composite Science and Technology, Vol. 69, No. 7-8, 2009, pp. 1187-1192. doi:10.1016/j.compscitech.2009.02.022
[17] R. A. Sanadi, D. F. Caulfield, R. E. Jacobson and R. M. Rowell, “Renewable Agricultural Fibers as Reinforcing Fillers in Plastics: Mechanical Properties of Kenaf Fiber- Polypropylene Composites,” Industrial and Engineering Chemistry Research, Vol. 34, No. 5, 1995, pp. 1889-1896. doi:10.1021/ie00044a041
[18] P.V. Joseph, K. Josepha and S. Thomas, “Effect of Processing Variables on the Mechanical Properties of Sisal- Fiber-Reinforced Polypropylene Composites,” Composite Science and Technology, Vol. 59, No. 11, 1999, pp. 1625- 1640. doi:10.1016/S0266-3538(99)00024-X
[19] P. Mutjé, M. E. Vallejos, J. Gironè, F. Vilaseca, A. López, J. A. López and J. A. Mèndes, “Effect of Maleated Polypropylene as Coupling Agent for Polypropylene Composites Reinforced with Hemp Strands,” Journal of Applied Polymer Science, Vol. 102, No. 1, 2006, pp. 833-840. doi:10.1002/app.24315
[20] A. Nechwatal, T. Reu?mann, S. B?hm and E. Richter, “The Dependence between the Process Technologies and the Effect of MAH-PP-Adhesives in Natural Fibre Reinforced Thermoplastic Composites,” Advanced Engineering Materials, Vol. 7, No. 1-2, 2005, pp. 68-73. doi:10.1002/adem.200400138
[21] M. Pluta, J. K. Jeszka and G. Boiteux, “Polylactide/ Montmorillonite Nanocomposites: Structure, Dielectric, Viscoelastic and Thermal Properties,” European Polymer Journal, Vol. 43, No. 7, 2007, pp. 2819-2835. doi:10.1016/j.eurpolymj.2007.04.009
[22] J. Rieger, “The Glass Transition Temperature Tg of Polymers—Comparison of the Values from Differential Thermal Analyses (DTA, DSC) and Dynamic Mechanical Measurments (Torsion Pendulum),” Polymer Testing, Vol. 20, No. 2, 2001, pp. 199-204. doi:10.1016/S0142-9418(00)00023-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.