Share This Article:

Temperature Dependent Motion of a Massive Quantum Particle

Abstract Full-Text HTML XML Download Download as PDF (Size:300KB) PP. 610-614
DOI: 10.4236/jmp.2012.37083    4,008 Downloads   5,930 Views   Citations
Author(s)    Leave a comment


We report model calculations of the time-dependent internal energy and entropy for a single quasi-free massive quantum particle at a constant temperature. We show that the whole process started from a fully coherent quantum state to thermodynamic equilibrium can be understood, based on statistics of diffracted matter waves. As a result of thermal interaction between the particle and its surroundings, the motion of the particle shows new feature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Peng, "Temperature Dependent Motion of a Massive Quantum Particle," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 610-614. doi: 10.4236/jmp.2012.37083.


[1] N. Piro, et al., “Heralded Single-Photon Absorption by a Single Atom,” Nature Physics, Vol. 7, 2011, pp. 17-20. doi:10.1038/nphys1805
[2] C. Zipkes, S. Palzer, C. Sias and M. Koehl, “A Trapped Single Ion inside a Bose-Einstein Condensate,” Nature, Vol. 464, No. 18, 2010, pp. 388-391. doi:10.1038/nature08865
[3] D. Serrate, et al., “Imaging and Manipulating the Spin Direction of Individual Atoms,” Nature Nanotechnology, Vol. 5, 2010, pp. 350-353. doi:10.1038/nnano.2010.64
[4] L. D. Landau and E. M. Lifshitz, “Statistical Physics,” 3rd Edition, Pergamon Press Ltd, Oxford, 1980.
[5] A. E. Allahverdyan and Th. M. Nieuwenhuizen, “Extraction of Work from a Single Thermal Bath in the Quantum Regime,” Physical Review Letters, Vol. 85, No. 9, 2000, pp. 1799-1802. doi:10.1103/PhysRevLett.85.1799
[6] G. W. Ford and R. F. O’Connell R, “A Quantum Violation of the Second Law,” Physical Review Letters, Vol. 96, No. 2, 2006, p. 020402. doi:10.1103/PhysRevLett.96.020402
[7] J. P. Peng, “Statistics of a Free Single Quantum Particle at a Finite Temperature,” Modern Physics Letters B, Vol. 24, No. 25, 2010, pp. 2541-2547. doi:10.1142/S0217984910024912
[8] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, “On the Lambert W Function,” Advances in Computational Mathematics, Vol. 5, No. 1, 1992, pp. 329-361. doi:10.1007/BF02124750
[9] R. Hildner, D. Brinks and N. F. van Hulst, “Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature,” Nature Physics, Vol. 7, 2011, pp. 172-177. doi:10.1038/nphys1858
[10] I. S. Gradshteyn and I. M. Rizhik, “Tables of Integrals, Series, and Products,” 7th Edition, Elservier Inc., London, 2007.
[11] A. Zeilinger, R. Gaehler, C. G. Shull, W. Treimer and W. Mampe, “Single- and Double-Slit Diffraction of Neutrons,” Reviews of Modern Physics, Vol. 60, No. 4, 1988, pp. 1067-1073. doi:10.1103/RevModPhys.60.1067
[12] A. Tonomura, J. Endo, T. Matsuda and T. Kawasaki, “Demonstration of Single-Electron Buildup of an Interference Pattern,” American Journal of Physics, Vol. 57, No. 2, 1989, pp. 117-120. doi:10.1119/1.16104
[13] D. W. Keith, C. R. Ekstrom, Q. A. Turchtte and D. E. Pritchard, “An Interferometer for Atoms,” Physical Re- view Letters, Vol. 66, No. 21, 1991, pp. 2693-2696. doi:10.1103/PhysRevLett.66.2693
[14] C. Presilla, R. Onofrio and M. Patriarca, “Classical and Quantum Measurements of Position,” Journal of Physics A: Mathematical and General, Vol. 30, No. 21, 1997, pp. 7385-7411. doi:10.1088/0305-4470/30/21/014
[15] J. Mauritsson, et al., “Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope,” Physical Review Letters, Vol. 100, No. 7, 2008, p. 073003. doi:10.1103/PhysRevLett.100.073003

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.