Share This Article:

Annealing Effects on Electrical Properties and Interfacial Reactions of Ni/Cu Schottky Rectifiers on n-Type InP

Abstract Full-Text HTML Download Download as PDF (Size:1419KB) PP. 538-545
DOI: 10.4236/jmp.2012.37074    4,167 Downloads   7,244 Views   Citations


We report on the effect of annealing temperature on electrical, interfacial reactions and surface morphological properties of Ni/Cu Schottky contacts on n-type InP. The extracted barrier height of as-deposited Ni/Cu Schottky contact is 0.59 eV (I-V) respectively. The high-quality Schottky contact with barrier height and ideality factor of 0.65 eV (I-V) and 1.15 respectively, can be obtained after annealing at 300℃ for 1 min in a nitrogen atmosphere. However, annealing at 400℃, results the decrease in the barrier height to 0.54 eV (I-V). From the above observations, it is observed that Ni/Cu Schottky contact exhibited excellent electrical properties after annealing at 300℃. Hence, the optimum annealing temperature for the Ni/Cu Schottky contact is 300℃. Furthermore, Cheung’s functions is used to extract the diode parameters including ideality factor, barrier height and series resistance. According to the XRD analysis, the formation of the indium phases at the Ni/Cu/n-InP interface could be the reason for the increase in the barrier height at annealing temperature 300℃. Further, the degradation of the barrier heights after annealing at 400℃ may be due to the formation of phosphide phases at the Ni/Cu/n-InP interface. Scanning electron microscopy (SEM) results show that the overall surface morphology of the Ni/Cu Schottky contact is reasonably smooth.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Reddy, M. Nagaraj, S. Naik and V. Reddy, "Annealing Effects on Electrical Properties and Interfacial Reactions of Ni/Cu Schottky Rectifiers on n-Type InP," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 538-545. doi: 10.4236/jmp.2012.37074.


[1] C. W. Wilmsen, “Physics and Chemistry of III-V Compound Semiconductor Interfaces,” Plenum Press, New York, 1985.
[2] R. T. Tung, “Recent Advances in Schottky Barrier Concepts,” Material Science Engineering R, Vol. 35, No. 1-3, 2001, pp. 1-138. doi:10.1016/S0927-796X(01)00037-7
[3] D. L. Lile and D. A. Collins, “An Insulated-Gate Charge Transfer Device on InP,” Applied Physics Letters, Vol. 37, No. 6, 1980, pp. 552-553. doi:10.1063/1.91983
[4] L. J. Brillson and C. F. Brucker, “Fermi-Level Pinning and Chemical Structure of InP Metal Interface,” Journal of Vacuum Science and Technology, Vol. 21, No. 2, 1982, pp. 564-569. doi:10.1116/1.571764
[5] S. Uno, T. Hashizume, S. Kasai, N.-J. Wu and H. Hasegawa, “0.86 eV Platinum Schottky Barrier on Indium Phosphide by in-Situ Electrochemical Process and Its Application to MESFETs,” Japanese Journal of Physics, Vol. 35, 1996, pp. 1258-1263. doi:10.1143/JJAP.35.1258
[6] H.-I. Chen and Y.-I. Chou, “A Comparative Study of Hydrogen Sensing Performances between Electroless Plated and Thermal Evaporated Pd/InP Schottky Diodes,” Semiconductor Science and Technology, Vol. 18, No. 2, 2003, pp. 104-110. doi:10.1088/0268-1242/18/2/307
[7] W.-C. Huang and D.-R. Cai, “Formation and Characterization of Aluminum-Oxide by Stack-Layered Metal Structure Schottky Diode,” International Workshop on Junction Technology, 2006, pp. 295-298.
[8] H. Cetin and E. Ayyildiz, “Electrical Characteristics of Au, Al, Cu/n-InP Schottky Contacts Formed on Chemically Cleaned and Air-Exposed n-InP Surface,” Physica B: Condensed Matter, Vol. 394, No. 1, 2007, pp. 93-99. doi:10.1016/j.physb.2007.02.013
[9] O. Gullu, “Ultrahigh (100%) Barrier Modification of n-InP Schottky Diode by DNA Biopolymer Nanofilms,” Microelectronic Engineering, Vol. 87, No. 4, 2010, pp. 648-651. doi:10.1016/j.mee.2009.09.001
[10] N. Ucar, A. F. Ozdemir, D. A. Aldemir, S. Cakmak, A. Calik, H. Yildiz and F. Cimilli, “The Effect of Hydrostatic Pressure on the Electrical Characterization of Au/n- InP Schottky Diodes,” Superlattices and Microstructures, Vol. 47, No. 5, 2010, pp. 586-591. doi:10.1016/j.spmi.2010.02.003
[11] M. Bhaskar Reddy, V. Janardhanam, A. Ashok Kumar, V. Rajagopal Reddy and P. Narasimha Reddy, “Influence of Rapid Thermal Annealing on Electrical and Structural Properties of Double Metal Structure Au/Ni/n-InP (111) Diodes,” Current Applied Physics, Vol. 10, No. 2, 2010, pp. 687-692. doi:10.1016/j.cap.2009.09.001
[12] S. Sankar Naik, V. Rajagopal Reddy, C.-J. Choi and J.-S. Bae, “Electrical and Structural Properties of Double Metal Structure Ni/V Schottky Contacts on n-InP after Rapid Thermal Process,” Journal of Material Science, Vol. 46, No. 2, 2011, pp. 558-565. doi:10.1007/s10853-010-5020-4
[13] A. Ashok Kumar, V. Janardhanam and V. Rajagopal Reddy, “Electrical, Structural and Morphological Characteristics of Rapidly Annealed Pd/n-InP (100) Schottky Structure,” Journal of Martial Science: Material Electronics, Vol. 22, No. 7, 2011, pp. 854-861. doi:10.1007/s10854-010-0225-5
[14] S. Sankar Naik, V. Rajagopal Reddy, C.-J. Choi and J.-S. Bae, “Electrical and Structural Properties of Pd/V/n-Type InP Schottky Structure as a Function of Annealing Temperature,” Surface and Interface Analysis, Vol. 44, No. 1, 2012, pp. 98-104. doi:10.1002/sia.3778
[15] G. Myburg and F. D. Auret, “Influence of the Electron Beam Evaporation Rate of Pt and the Semiconductor Carrier Density of the Characteristics Pt/n-GaAs Schottky Contacts,” Journal of Applied Physics, Vol. 71, No. 12, 1992, pp. 6172-6176. doi:10.1063/1.350426
[16] E. H. Rhoderick and R. H. Williams, “Metal-Semicon- ductor Contacts,” 2nd Edition, Clarendon, Oxford, 1988.
[17] D. T. Quan and H. Hbib, “High Barrier Height Au/n-Type InP Schottky Contacts with a POxNyHz Interfacial Layer,” Solid State Electronics, Vol. 36, No. 3, 1993, pp. 339-344. doi:10.1016/0038-1101(93)90085-5
[18] S. K. Cheung and N. W. Cheung, “Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics,” Applied Physics Letters, Vol. 49, No. 2, 1986, pp. 85-87. doi:10.1063/1.97359
[19] H. Norde, “A Modified Forward I-V Plot for Schottky Diodes with High Series Resistance,” Journal of Applied Physics, Vol. 50, No. 7, 1979, pp. 5052-5053. doi:10.1063/1.325607
[20] W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su and P. Chye, “Unified Mechanism for Schottky-Barrier Formation and III-V Oxide Interface States,” Physical Review Letters, Vol. 44, No. 6, 1980, pp. 420-423. doi:10.1103/PhysRevLett.44.420
[21] T. S. Huang and R. S. Fang, “Barrier Height Enhancement of Pt/n-InP Schottky Diodes by P2S5/(NH4)2S Solution Treatment of the InP Surface,” Solid State Electronics, Vol. 37, No. 8, 1994, pp. 1461-1466. doi:10.1016/0038-1101(94)90152-X
[22] M. Andersson, “Ternary Phase Equilibria in the (Cr, Mo, W)-In-P Systems at 600?C,” Journal of Alloys and Compound, Vol. 198, No. 1-2, 1993, pp. L15-L18. doi:10.1016/0925-8388(93)90134-9
[23] D. G. Ivey, P. Jian and R. Bruce, “Reactions between Pd Thin Films and InP,” Journal of Electronic Materials, Vol. 21, No. 8, 1992, pp. 831-839. doi:10.1007/BF02665523
[24] V. Rajagopal Reddy and P. Koteswara Rao, “Annealing Temperature Effect on Electrical and Structural Properties of Cu/Au Schottky Contacts to n-Type GaN,” Microelectronic Engineering, Vol. 85, No. 2, 2008, pp. 470-476. doi:10.1016/j.mee.2007.08.006
[25] J. Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F. Scholz, V. Harle, O. Briot, B. Gil and R. L. Aulombard, “Influence of Surface Defects on the Characteristics of GaN Schottky Diodes,” Material Research Society Symposium Proceedings, Vol. 449, 1996, pp. 1085-1090. doi:10.1557/PROC-449-1085
[26] R. Van de Walle, R. L. Van Meirhaeghe, W. H. Laflere and F. Cardon, “On the Relationship between Interfacial Defects and Schottky Barrier Height in Ag, Au, and Al/nGaAs Contacts,” Journal of Applied Physics, Vol. 74, No. 3, 1993, pp. 1885-1889. doi:10.1063/1.354797

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.