Share This Article:

Negative Magnetoresistance Behaviour and Variable Range Hopping Conduction in Insulating NbSi Amorphous Alloys at Very Low Temperature with aagnetic Field

Abstract Full-Text HTML Download Download as PDF (Size:508KB) PP. 521-528
DOI: 10.4236/jmp.2012.37071    5,019 Downloads   8,649 Views   Citations

ABSTRACT

We present results of an experimental study of magnetoresistance (MR) in insulating NbSi amorphous alloys sample showing Variable Range Hopping (VRH) conductivity. The MR is found to be negative in a wide range of low temperature (4.2-20 K) and in the range of moderate magnetic fields (0-4 T). We made tentative analysis using three theoretical models which are the model of quantum interference, the model of Zeeman effect and the model of localized magnetic moments

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Sybous, A. El Kaaouachi, J. Hemine, A. Narjis, L. Limouny, S. Dlimi, R. Abdia and G. Biskupski, "Negative Magnetoresistance Behaviour and Variable Range Hopping Conduction in Insulating NbSi Amorphous Alloys at Very Low Temperature with aagnetic Field," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 521-528. doi: 10.4236/jmp.2012.37071.

References

[1] A. Kawabata, “Theory of Negative Magnetoresistance in Three-Dimensional Systems,” Solid State Communications, Vol. 34, No. 6, 1980, pp. 431-432. doi:10.1016/0038-1098(80)90644-4
[2] B. L. Altshuler, A. G. Aronov, A. I. Larkin and D. E. Khmelnitski, “Positive Quasiclassical Magnetoresistance and Quantum Effects in Germanium Quantum Wells,” Low Temperature Physics, Vol. 36, No. 12, 2010, Article ID: 1076. doi:10.1063/1.3536348
[3] T. A. Dauzhenka, V. K. Ksenevich, I. A. Bashmakov and J. Galibert, “Origin of Negative Magnetoresistance in Polycrystalline SnO2 Films,” Physical Review B, Vol. 83, No. 16, 2011, Article ID: 165309. doi:10.1103/PhysRevB.83.165309
[4] V. L. Nguyen, B. Z. Spivak and B. I. Shklovskii, “Aha- ronov-Bohm Oscillations with Normal and Superconductive Flux-Quanta in Hopping Conduction,” Soviet Physics—JETP, Vol. 62, 1985, p. 1021.
[5] U. Sivan, O. Entin-Wohlman and Y. Imry, “Orbital Magnetoconductance in the Variable-Range-Hopping Regime,” Physical Review Letters, Vol. 60, No. 15, 1988, pp. 1566- 1569. doi:10.1103/PhysRevLett.60.1566
[6] J. C. Ousset, S. Askenazy, H. Rakoto and J. M. Broto, “Analytic Expressions of the Magnetoresistance Due to Localization and Electron-Electron Interaction Effects. - Application to the Amorphous Alloys La3Al and La3Ga,” Journal de Physique, Vol. 46, No. 12, 1985, pp. 2145- 2149. doi:10.1051/jphys:0198500460120214500
[7] D. V. Baxter, R. Richter, M. L. Trudeau, R. W. Cochrane and J. O. Strom-Olsen, “Fitting to Magnetoresistance under Weak Localization in Three Dimensions,” Journal de Physique, Vol. 50, No. 13, 1989, pp. 1673-1688. doi:10.1051/jphys:0198900500130167300
[8] B. L. Altshuler, A. G. Aronov and D. E. Khmelnitski, “Effects of Electron-Electron Collisions with Small Energy Transfers on Quantum Localisation,” Journal of Physics C: Solid State Physics, Vol. 15, No. 36, 1982, Article ID: 7367. doi:10.1088/0022-3719/15/36/018
[9] Y. Toyozawa, “Theory of Localized Spins and Negative Magnetoresistance in the Metallic Impurity Conduction,” Journal of the Physical Society of Japan, Vol. 17, 1962, pp. 986-1004. doi:10.1143/JPSJ.17.986
[10] D. J. Bishop, E. G. Spencer and R. C. Dynes, “The Metal-Insulator Transition in Amorphous Nb:Si,” Solid- State Electronics, Vol. 28, No. 1-2, 1985, pp. 73-79. doi:10.1016/0038-1101(85)90212-6
[11] N. F. Mott, “Conduction in Glasses Containing Transition Metal Ions,” Journal of Non-Crystalline Solids, Vol. 1, No. 1, 1968, pp. 1-17. doi:10.1016/0022-3093(68)90002-1
[12] N. F. Mott, “Metal-Insulator Transitions,” Taylor and Francis, London, 1974.
[13] I. S. Shlimak and E. I. Nikulin, JETP Letters, Vol. 15, 1972, p. 20.
[14] F. R. Allen and C. J. Adkins, “Electrical Conduction in Heavily Doped Germanium,” PhysicsPhilosophical Magazine, Vol. 26, No. 4, 1972, pp. 1027-1042. doi:10.1080/14786437208226974
[15] N. V. Agrinskaya and V. I. Kozub, “Effect of Preexponential Factors on Temperature Behavior of VRH Conductivity,” Solid State Communications, Vol. 91, No. 11, 1994, pp. 853-857. doi:10.1016/0038-1098(94)90001-9
[16] G. Biskupski, H. Dubois and O. Laborde, “Lecture Notes in Physics,” Springer, Berlin, 1984.
[17] B. I. Shklovskii and A. L. Efros, “Electronic Properties of Doped Semiconductors,” Springer, Berlin, 1984.
[18] A. L. Efros, and B. I. Shklovskii, “Coulomb Gap and Low Temperature Conductivity of Disordered Systems,” Journal of Physics C: Solid State Physics, Vol. 8, 1975, pp. L49-L51.
[19] T. Holstein, “Hall Effect in Impurity Conduction,” Physical Review, Vol. 124, No. 5, 1961, pp. 1329-1347. doi:10.1103/PhysRev.124.1329
[20] A. Narjis, A. El kaaouachi, L. Limouny, S. Dlimi, A. Sybous, J. Hemine, R. Abdia and G. Biskupski, “Study of Insulating Electrical Conductivity in Hydrogenated Amorphous Silicon-Nickel Alloys at Very Low Temperature,” Physica B, Vol. 406, No. 21, 2011, pp. 4155-4158. doi:10.1016/j.physb.2011.08.021
[21] H. Liu, A. Pourret and P. Guyot-Sionnest, “Mott and Efros-Shklovskii Variable Range Hopping in CdSe Quantum Dots Films,” ACS Nano, Vol. 4, No. 9, 2010, pp. 5211-5216. doi:10.1021/nn101376u
[22] V. L. Nguyen, B. Z. Spivak and B. I. Shklovskii, “Tunnel Hops in Disordered Systems,” JEPT Letters, Vol. 41, 1985, p. 42.
[23] V. L. Nguyen, B. Z. Spivak and B. I. Shklovskii, “Aha- ronov-Bohm Oscillations with Normal and Superconductive Flux-Quanta in Hopping Conduction,” Soviet Physics—JETP, Vol. 62, 1985, p.1021.
[24] U. Sivan, O. Entin-Wohlman and Y. Imry, “Orbital Magnetoconductance in the Variable-Range-Hopping Regime,” Physical Review Letters, Vol. 60, No. 15, 1988, pp. 1566-1569. doi:10.1103/PhysRevLett.60.1566
[25] O. Entin-Wohlman, Y. Imry and U. Sivan, “Orbital Magnetoconductance in the Variable-Range-Hopping Regime,” Physical Review B, Vol. 40, No. 12, 1989, pp. 8342-8348. doi:10.1103/PhysRevB.40.8342
[26] S. Ishida, S. Takaoka, K. Oto, K. Murase, S. Shirai and T. Serikawa, “Hopping Transport in Band-Tail of Grain Boundaries in Poly-Si TFTs,” Applied Surface Science, Vol. 113-114, 1997, pp. 685-688. doi:10.1016/S0169-4332(96)00957-9
[27] S. Shekhar, V. Prasad and S. V. Subramanyam, “Quantum Interference Effect in Strongly Localized System of Polymer-Nanocomposites,” Physics Letters A, Vol. 371, No. 5-6, 2007, pp. 486-489. doi:10.1016/j.physleta.2007.06.060
[28] W. Schirmacher, “Quantum-Interference Magnetoconductivity in the Variable-Range-Hopping Regime,” Physi- cal Review B, Vol. 41, No. 4, 1990, pp. 2461-2468. doi:10.1103/PhysRevB.41.2461
[29] H. Fukuyama and K. Yosida, “Negative Magnetoresistance in the Anderson Localized States,” Journal of the Physical Society of Japan, Vol. 46, 1979, pp. 102-105. doi:10.1143/JPSJ.46.102
[30] K. Yosida, “Anomalous Electrical Resistivity and Magnetoresistance Due to an s-d Interaction in Cu-Mn Alloys,” Physical Review, Vol.107, No. 2, 1957, pp. 396- 403. doi:10.1103/PhysRev.107.396
[31] B. I. Shklovskii and A. L. Efros, “Electron Properties of Doped Somiconductors,” Springer-Verlag, Berlin, 1984.
[32] A. El Kaaouachi, R. Abdia, A. Nafidi and H. Sahsah, “Variable Range Hopping Conductivity and Negative Magnetoresistance in n-Type InP Semiconductor,” Physica E, Vol. 32, No. 1-2, 2006, pp. 419-421. doi:10.1016/j.physe.2005.12.083
[33] R. Abdia, A. El Kaaouachi, A. Nafidi and J. Himine, “Positive Magnetoresistance in Hydrogenated Amorphous Alloys Silicon Nickel a-Si1-yNiy:H at Very Low Temperature with Magnetic Field,” Physica B, Vol. 373, No. 1, 2006, pp. 96-99. doi:10.1016/j.physb.2005.11.096
[34] A. El Kaaouachi, A. Nafidi, Ah. Nafidi and G. Biskupski, “Positive and Negative Magnetoresistance on Both Sides of the Metal-Insulator Transition in Metallic n-Type InP,” Semiconductor Science and Technology, Vol. 18, No. 2, 2003, p. 69. doi:10.1088/0268-1242/18/2/301
[35] A. El Kaaouachi, A. Mouden and G. Biskupski, “Negative Magnetoresistance Due to Weak Localization and Electronelectron Interactions Effects in Metallic n-Type InP Semiconductor at Very Low Temperatures with Mag- netic Field,” Physica B, Vol. 266, No. 4, 1999, pp. 378- 381. doi:10.1016/S0921-4526(98)01217-4
[36] L. Essaleh, J. Galibert, S. M. Wasim, E. Hernandez and J. Leotra, “Low-Field Negative Magnetoresistance in the Variable-Range-Hopping Regime in Copper Indium Diselenide,” Physical Review B, Vol. 50, No. 24, 1994, pp. 18040-18045. doi:10.1103/PhysRevB.50.18040
[37] J. Galibert, V. A. Samuilov, V. K. Ksenevich, T. Ferrus, M. Rfailovich and J. Sokolov, “Magnetoresistance of Low Dimensional Mesoscopic Honeycomb-Shaped GaAs Networks,” Physica B, Vol. 294-295, 2001, pp. 314-318. doi:10.1016/S0921-4526(00)00667-0
[38] R. Abdia, A. El Kaaouachi, A. Nafidi and G. Biskupski, “Variable Range Hopping Conductivity and Negative Magnetoresistance in n-Type InP Semiconductor,” Solid- State Electronics, Vol. 53, No. 5, 2009, pp. 469-472. doi:10.1016/j.sse.2009.02.002
[39] L. Essaleh, “Caractérisation et étude par Magnétotransport du Composé Ternaire Semiconducteur CuInSe2,” Thèse de doctorat, Thoulouse, 1992.
[40] M. Benzaquen, D. Walsh and K. Mazuruk, “Low-Field Magnetoresistance of n-Type GaAs in the Variable-Range Hopping Regime,” Physical Review B, Vol. 38, No. 15, 1988, pp. 10933-10936. doi:10.1103/PhysRevB.38.10933
[41] G. Biskupski and H. Dubois, “Impurity Conduction and Negative Magnetoresistance in Compensated n Type Indium Phosphide, at Low Temperature,” Solid State Com- munications, Vol. 28, No. 8, 1978, pp. 601-605. doi:10.1016/0038-1098(78)90589-6
[42] A. Oubraham, G. Biskupski and E. Zdanowicz, “Negative Magnetoresistance of n-Type Compensated Cadmium Arsenide (CdAs2) in the Temperature Range 11 K-4.2 K,” Solid State Communications, Vol. 77, No. 5, 1991, pp. 351-354. doi:10.1016/0038-1098(91)90749-L
[43] X. D. Liu and E. Y. Jiang, “Low Temperature Magnetoresistance of Al-Doped ZnO Films,” Solid State Communications, Vol. 141, No. 7, 2007, pp. 394-397. doi:10.1016/j.ssc.2006.11.023

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.