Synthesis, Growth and Characterization of 4-Benzeneazoaniline Single Crystal

Abstract

A new organic nonlinear optical material 4-Benzeneazoaniline (C12H11N3) was synthesized by diazotization and diazocoupling mechanisms. Single crystal of 4-Benzeneazoaniline was grown by slow evaporation of methanol solution at room temperature. Transparent crystals with size up_to 13x4x4 mm3 were obtained. Single crystal X-ray diffractometer was utilized to measure the unit cell parameters and to confirm the crystal structure. The structure of compound was further confirmed by FTIR, 1H & 13C NMR and mass spectral analyses. The UV-Vis-NIR result shows that the crystal has a sharp cut off at 220 nm and is nearly 75% transparent over a wide wavelength range enabling it for application in the UV region. The optical energy gap of 4- Benzeneazoaniline was found to be 3.4 eV. Thermal properties of crystals were investigated using thermogravimetric and differential scanning calorimetric analyses, which indicated that the material does not decompose before melting. The NLO test confirms the second harmonic signal generation in the sample.

Share and Cite:

T. Kumar, S. Janarthanan, S. Pandi, M. Raj, K.   and D. Anand, "Synthesis, Growth and Characterization of 4-Benzeneazoaniline Single Crystal," Journal of Minerals and Materials Characterization and Engineering, Vol. 9 No. 11, 2010, pp. 961-972. doi: 10.4236/jmmce.2010.911069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. O. Marcy, L. F. Warren, M. S. Webb, C. A. Ebbers, S. P. Velsko, G. C. Kennedy, and G. C. Catella, Appl. Opt. 31 (1992) 5051.
[2] X. Q. Wang, D. Xu, D. R. Yuan, Y. P. Tian, W. T. Yu, S. Y. Sun, Z. H. Yang, Q. Fang, M. K. Lu, Y. X. Yan, F. Q. Meng, S. Y. Guo, G. H. Zhang, and M. H. Jiang, Mat. Res. Bull. 34 (1999) 2003.
[3] T. Pal, T. Kar, G. Bocelli, and L. Rigi, Crystal Growth & Design, 4 (2004) 743.
[4] S. Manivannan, and S. Dhanuskodi, J. Cryst. Growth 262 (2004) 473.
[5] W. Nie, Adv. Mater. 5 (1993) 520.
[6] T.J. Marks and M.A. Ratner, Angew. Chem. Int. Ed. Engl. 34 (1995) 155.
[7] J. Park and J. Koh, Dyes and Pigments, 82 (2009) 347.
[8] V. Krishnakumar, G. Eazhilarasi, R. Nagalakshmi, M. Piasecki, I.V. Kityk and P. Bragiel, Eur. Phys. J. Appl. Phys. 42 (2008) 263.
[9] M. Jamkowski, A. Kudelski, J. Bukowska and K. Jackowska. J. Electroanal. Chem. 385 (1995) 177.
[10] S. Urania Zissi, E. Michael Kornaros and C. Gerasimos Lyberatos, Water Environment Research, 71 (1999) 323.
[11] T. Kishore Kumar, S. Janarthanan, S.M. Ravikumar, S. Pandi, M. Vimalan, P. Sagayaraj and D. Prem Anand, J. Mater. Sci. Technol. 24 (2008) 891.
[12] T. Kishore Kumar, S. Janarthanan, M. Victor Antony Raj, S. Pandi, P. Sagayaraj and D. Prem Anand, J. Phys. Chem. Solids, 69 (2008) 2634.
[13] T. Kishore Kumar, S. Janarthanan, S. Pandi, S. Selvakumar and D. Prem Anand, Crystal Growth & Design, 9 (2009) 2061.
[14] P.M. Ushasree, R. Jayavel and P. Ramasamy, Mater. Sci. Eng. B, 65 (1999) 153.
[15] Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons, 7th edition Singapore, 2007.
[16] R. Bairava Ganesh, V. Kannan, R. Sathyalakshmi and P. Ramasamy, Mater. Lett. 61 (2007) 706.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.