Share This Article:

Synthesis and Characterization of LaNixCo1-xO3 Perovskites via Complex Precursor Methods

Abstract Full-Text HTML Download Download as PDF (Size:1376KB) PP. 39-45
DOI: 10.4236/msa.2010.12008    6,562 Downloads   12,330 Views   Citations

ABSTRACT

This work presents a study on the synthesis of LaNixCo1-xO3 perovskites via complex precursor methods. Perovskite oxides with the composition LaNixCo1-xO3 were synthesized by chelating precursor and polymeric precursor methods using nickel and/or cobalt nitrates, lanthanum nitrate, ethylene glycol, citric acid, and EDTA as starting source. The obtained perovskite were characterized by thermogravimetric analysis, infrared spectroscopy, X-ray diffraction and the morphology of the samples were investigated by N2 adsorption experiments and average medium particle size. TG curves and FTIR spectra were particularly useful in establishing of the optimal calcination temperature of the precursor powders. X-ray diffraction patterns revealed the formation of the perovskite structure in all samples prepared by both synthesis method and after calcinations at 700℃. The results showed that the preparation method resulted in oxides with the intended structure. The specific surface area values were influenced by preparation method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Silva, J. Santos, D. Martinelli, A. Pedrosa, M. de Souza and D. Melo, "Synthesis and Characterization of LaNixCo1-xO3 Perovskites via Complex Precursor Methods," Materials Sciences and Applications, Vol. 1 No. 2, 2010, pp. 39-45. doi: 10.4236/msa.2010.12008.

References

[1] T.-R. Ling, Z.-B. Chen and M.-D. Lee, “Studies on Catalytic and Conductive Properties of LaNiO3 for Oxidation of C2H5OH3CHO and CH4,” Catalysis Today, Vol. 26, No. 1, 1995, pp. 79-86.
[2] T. Hirohisa and M. Makoto, “Advances in Designing Perovskite Catalysts,” Current Opinion in Solid State and Materials Science, Vol. 5, No. 5, 2001, pp. 381-387.
[3] S. Liu, K. Li and R. Hughes, “Preparation of SrCe0.95 Yb0.05O3−α Perovskite for Use as a Membrane Material in Hollow Fibre Fabrication,” Materials Research Bulletin, Vol. 39, No. 1, 2004, pp. 119-133.
[4] A. M. G. Pedrosa, J. D. G. Fernandes, D. M. Melo, A. S. Araújo, M. J. B. Souza and D. K. Gomes, “Synthesis and Catalytic Properties of Lanthanum Nickelate Perovskite Materials,” Reaction Kinetics and Catalysis Letters, Vol. 84, No. 1, 2005, pp. 3-9.
[5] E. Campagnoli, A. Tavares, L. Fabbrini, I. Rossetti, Y. A. Dubitsky, A. Zaopo and L. Forni, “Effect of Preparation Method on Activity and Stability of LaMnO3 and LaCoO3 Catalysts for the Flameless Combustion of Methane,” Applied Catalysis B: Environmental, Vol. 55, No. 2, 2005, pp. 133-139.
[6] S. Liu, X. Tan, K. Li, R. Hughes, “Synthesis of Strontium Cerates-Based Perovskite Ceramics via Water-Soluble Complex Precursor Routes,” Ceramics International, Vol. 28, No. 3, 2002, pp. 327-335.
[7] A. A. Leontiou, A. K. Ladavos and P. J. Pomonis, “Catalytic NO Reduction with CO on La1−xSrx (Fe3+/Fe4+) O3±δ Perovskite-Type Mixed Oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90),” Applied Catalysis A: General, Vol. 241, No. 1-2, 2003, pp. 133-141.
[8] H. Tanaka and M. Misono, “Advances in Designing Perovskite Catalysts,” Current Opinion in Solid State and Materials Science, Vol. 5, No. 5, 2001, pp. 381-387.
[9] N. Yamazoe and Y. Teraoka, “Oxidation Catalysis of Perovskites: Relationships to Bulk Structure and Composition (Valency, Defect, etc.),” Catalysis Today, Vol. 8, No. 2-3, 1990, pp. 175-199.
[10] K. Kleveland, M. A. Einarsrud and T. Grande, “Sintering of LaCoO3 Based Ceramics,” Journal of European Ceramic Society, Vol. 20, No. 2, 2000, pp. 185-193.
[11] D. Klvana, J. Vaillancourt, J. Kirchnerova and J. Chaouki, “Combustion of Methane over La0.66Sr0.34Ni0.3Co0.7O3 and La0.4Sr0.6Fe0.4Co0.6O3 Prepared by Freeze-Drying,” Applied Catalysis A: General, Vol. 109, No. 2-3, 1994, pp. 181-193.
[12] N. Gunasekaran, S. Saddawi and J. J. Carberry, “Effect of Surface Area on the Oxidation of Methane over Solid Oxide Solution Catalyst La0.8Sr0.2MnO3,” Journal of Catalysis, Vol. 159, No. 1, 1996, pp. 107-111.
[13] M. Alifanti, R. Auer, J. Kirchnerova, F. Thyrion, P. Grange and B. Delmona, “Activity in Methane Combustion and Sensitivity to Sulfur Poisoning of La1−xCexMn1−yCoyO3 Perovskite Oxides,” Applied Catalysis B: Environmental, Vol. 41, No. 1-2, 2003, pp. 71-81.
[14] T. Nitadori and M. Misono, “Catalytic Properties of La1−xA′xFeO3 (A′ = Sr,Ce) and La1−xCexCoO3,” Journal of Catalysis, Vol. 93, No. 2, 1985, pp. 459-466.
[15] A. K. Azada, S.-G. Eriksson, S. A. Ivanov, R. Mathieu, P. Svedlindh, J. Eriksen and H. Rundlöf, “Synthesis, Structural and Magnetic Characterisation of the Double Perovskite A2MnMoO6 (A=Ba, Sr),” Journal of Alloys and Compounds, Vol. 364, No. 1-2, 2004, pp. 77-82.
[16] F.-C. Buciuman, F. Patcas, J.-C. Menezo, J. Barbier, T. Hahn and H.-G. Lintz, “Catalytic Properties of La0.8A0.2MnO3 (A = Sr, Ba, K, Cs) and LaMn0.8B0.2O3 (B = Ni, Zn, Cu) Perovskites: 1. Oxidation of Hydrogen and Propene,” Applied Catalysis Bi Environmental, Vol. 35, No. 3, 2002, pp. 175-183.
[17] R. Spinicci, A. Tofanari, M. Faticanti, I. Pettiti and P. Porta, “Hexane Total Oxidation on LaMO3 (M = Mn, Co, Fe) Perovskite-Type Oxides,” Journal of Molecular Catalysis A: Chemical, Vol. 176, No. 1-2, 2001, pp. 247- 252.
[18] G. Saracco, F. Geobaldo and G. Baldi, “Methane Combustion on Mg-Doped LaMnO3 Perovskite Catalysts,” Applied Catalysis B: Envirnomental, Vol. 20, No. 4, 1999, pp. 277-288.
[19] R. Zenati, C. Bernard, C. Calmet, S. Guillemet, G. Fantozzi and B. Durand, “Internal Friction Investigation of Phase Transformation in nearly Stoichiometric LaMnO3+δ,” Journal of the European Ceramic Society, Vol. 25, No. 6, 2005, pp. 935-941.
[20] M. D. S. Kumar, T. M. Srinivasan, P. Ramasamy and C. Subramanian, “Synthesis of Lanthanum Aluminate by a Citrate-Combustion Route,” Materials Letters, Vol. 25, No. 3-4, 1995, pp. 171-174
[21] L. Hong, F. Guo and J. Lin, “From Chelating Precursors to La0.05Sr0.95CoO3−y Oxide,” Materials Research Bulletin, Vol. 34, No. 12-13, 1999, pp. 1943-1958.
[22] A. M. G. Pedrosa, M. J. B. Souza, B. A. Marinkovic, D. M. A. Melo and A. S. Araujo, “Structure and Properties of Bifunctional Catalysts Based on Zirconia Modified by Tungsten Oxide Obtained by Polymeric Precursor Method,” Applied Catalysis A: General, Vol. 342, No. 1-2, 2008, pp. 56-62.
[23] A. M. G. Pedrosa, D. M. A. Melo, M. J. B. Souza, A. O. S. Silva and A. S. Araujo, “Effect of Cerium, Holmium and Samarium Ions on the Thermal and Structural Properties of the HZSM-12 Zeolite,” Journal of Thermal Analysis and Calorimetry, Vol. 84, No. 2, 2006, pp. 503-509.
[24] D. Zhou, G. Huang, X. Chen, J. Xu and S. Gong, “Synthesis of LaAlO3 via Ethylenediaminetetraacetic Acid Precursor,” Materials Chemistry and Physics, Vol. 84, No. 1, 2004, pp. 33-36.
[25] Y. H. Huang, Z.-G. Xu, C.-H. Yan, Z.-M. Wang, T. Zu, C.-S. Liao, S. Gao and G.-X. Xu, “Soft Chemical Synthesis and Transport Properties of La0.7Sr0.3MnO3 Granular Perovskites,” Solid State Communications, Vol. 114, No. 1, 2000, pp. 43-47.
[26] M. Popa and M. Kakihana, “Synthesis of Lanthanum Cobaltite (LaCoO3) by the Polymerizable Complex Route,” Solid State Ionics, Vol. 151, No. 1-4, 2002, pp. 251-257.
[27] S. Nakayama, M. Okazaki, Y. L. Aung and M. Sakamoto, “Preparations of Perovskite-Type Oxides LaCoO3 from Three Different Methods and their Evaluation by Homogeneity, Sinterability and Conductivity,” Solid State Ionics, Vol. 158, No. 1-2, 2003, pp. 133-139.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.