Structural, Electrical and Optical Characterization Studies on Glycine Picrate Single Crystal : A Third Order Nonlinear Optical Material

Abstract

Single crystal of an organic nonlinear optical (NLO) material, Glycine picrate (GP), was grown by slow cooling method. The structural perfection of the grown crystal was analyzed by highresolution X-ray diffraction (rocking curve) measurements. UV-Visible-NIR spectral analysis was used to determine the optical constants and band gap of GP. The nature of variation of dielectric constant with frequency at different temperatures was investigated. Third-order optical nonlinearities of GP crystal were investigated. Etch patterns of the grown crystal quality were studied.

Share and Cite:

T. Devi, N. Lawrence, R. Babu, K. Ramamurthi and G. Bhagavannarayana, "Structural, Electrical and Optical Characterization Studies on Glycine Picrate Single Crystal : A Third Order Nonlinear Optical Material," Journal of Minerals and Materials Characterization and Engineering, Vol. 8 No. 10, 2009, pp. 755-763. doi: 10.4236/jmmce.2009.810065.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Moitra, T. Kar, J.Cryst. Growth 310(2008) 4539
[2] Z.H. Sun, G.H. Zhang, X.Q. Wang, X.F. Cheng, X.J. Liu, L.Y. Zhu, H.L. Fan, G. Yu, D. Xu, J.Cryst. Growth 310(2008) 2842
[3] T. Uma Devi , N. Lawrence, R. Ramesh Babu, K. Ramamurthi J. Cryst. Growth 310 (2008) 116
[4] T. Uma Devi , N. Lawrence, R. Ramesh Babu, K. Ramamurthi Spectrochim. Acta A 71( 2008) 340
[5] T. Uma Devi , N. Lawrence, R. Ramesh Babu, S. Selvanayagam, Helen Stoeckli-Evans, K. Ramamurthi Cryst. Growth Des. 9 (2009) 1370
[6] T. Uma Devi , N. Lawrence, R. Ramesh Babu, K. Ramamurthi Mat. Res. India, 5 (2008)397
[7] T. Kai, M. Goto, K. Furuhata, H. Takayanagi, Anal. Sci. 10 (1994)359.
[8] J.M. Hales, S.J. Zheng, S. Barlow, S.R. Mrder, J.W. Perry, J. Am.Chem. Soc. 128 (2006) 11362.
[9] S.R. Marder, B. Kippelen, A.K.-Y. Jen, N. Peyhambarian, Nature 388 (1997) 845.
[10] Q. Wang, J. Han, H. Gong, D. Chen, X. Zhao, J. Feng, J. Ren, Adv. Funct. Mater. 16 (2006) 2405.
[11] Y. Zhu, Y.-Z. Zhu, H.-B. Song, J.-Y. Zheng, Z.-B. Liu, J.-G. Tian, Tetrahedron Lett. 48 (2007) 5687.
[12] X. Wang et al., J. Phys. Chem. B 110 (2006) 1566.
[13] M. Sheik-Bahae, A. A. Said, T-H Wei, D. J. Hagan and E. W. Van Stryland, IEEE J. Quantum Electron. 26 (1990) 760.
[14] G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar and K.S. Bartwal , J. Appl. Cryst. 38 (2005) 768
[15] J. Bohm, R.B. Heimann, M. Hengst, R. Roewer, J. Schindler, J. Cryst. Growth 204 (1999) 128.
[16] I.H. Jung, K.B. Shim, K.H. Auh, T. Fukuda, Mater. Lett. 46 (2000)354.
[17] L.R. Dalton, J. Phys.: Cond. Matter 15 (2003) 897.
[18] N. Tigau, V. Ciupinaa, G. Prodana, G.I. Rusub, C. Gheorghies, E. Vasilec, Journal of Optoelectronics and Advanced Materials 6(2004) 211
[19] J.J. Rodrigues Jr., L. Misoguti, F.D. Nunes, C.R. Mendonca, S.C. Zilio, Opt. Mater. 22 (2003) 235.
[20] D.D.O. Eya, A.J. Ekpunobi, C.E. Okeke, Academic Open Internet Journal 17 (2006) 1311.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.