A DFT/ECP-Small Basis Set Modelling of Cisplatin: Molecular Structure and Vibrational Spectrum

Abstract

A DFT conformational and vibrational analysis of a single molecule of cisplatin (cis-[Pt(NH3)2Cl2]) was performed by means of PW91 functional and LANL08 ECP basis set for the Pt atom. 3-21G and 3-21G* Basis sets were used for the remaining atoms. All the initially chosen conformations were found to converge to the global minimum conformation of C2v symmetry with H atoms lying in the coordination plane and pointing to the Cl atoms. The computational results were compared with the newest experimental structural data and with the vibrational spectroscopic data for cisplatin, obtained by other workers. The chosen level of theory was found to describe satisfactory the molecular structure (r. m. s. of the relative deviations ≤ 6%) and the harmonic vibrational frequencies (r. m. s. of the relative deviations ≤ 5%) of cisplatin.

Share and Cite:

N. Dodoff, "A DFT/ECP-Small Basis Set Modelling of Cisplatin: Molecular Structure and Vibrational Spectrum," Computational Molecular Bioscience, Vol. 2 No. 2, 2012, pp. 35-44. doi: 10.4236/cmb.2012.22004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Lippert “Chemistry and Biochemistry of a Leading Anticancer Drug,” Verlag Helvetica Chimica Acta, Zürich, 1999.
[2] S. M. Cohen and S. J. Lippard, “Cisplatin: From DNA Damage to Cancer Chemotherapy,” Progress in Nucleic Acids Research and Molecular Biology, Vol. 67, 2001, pp. 93-130. doi:10.1016/S0079-6603(01)67026-0
[3] R. A. Alderden, M. D. Hall and T. W. Hambley, “The Discovery and Development of Cisplatin,” Journal of Chemical Education, Vol. 83, No. 5, 2006, pp. 728-734. doi:10.1021/ed083p728
[4] A.-M. Florea and D. Büsselberg, “Cisplatin as an AntiTumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects,” Cancers, Vol. 3, 2011, pp. 1351-1371. doi:10.3390/cancers3011351
[5] T. Boulikas and M. Vougiouka, “Cisplatin and Platinum Drugs at the Molecular Level,” Oncology Reports, Vol. 10, No. 6, 2003, pp. 1663-1682.
[6] J. Reedijk, “New Cues for Patinum Atitumor Chemistry: Kinetically Controlled Metal Binding to DNA,” Proceedings of the National Academy of Sciences of the USA, Vol.100, No. 7, 2003, pp. 3611-3616.doi:10.1073/pnas.0737293100
[7] I. Kostova, “Platinum Complexes as Anticancer Agents,” Recent Patents on Anti-Cancer Drug Discovery, Vol. 1, No. 1, 2006, pp. 1-22.
[8] M. J. Hannon, “Metal-based Anticancer Drugs: From a Past Anchored in Platinum Chemistry to a Post-Genomic Future of Diverse Chemistry and Biology,” Pure and Applied Chemistry, Vol. 79, No. 12, 2007, pp. 2243-2261. doi:10.1351/pac200779122243
[9] T. Boulikas, A. Pantos, E. Bellis and P. Christofis, “Designing Platinum Compounds in Cancer: Structures and Mechanisms,” Cancer Therapy, Vol. 5, 2007, pp. 537583.
[10] X. Wang and Z. Guo, “Towards the Rational Design of Platinum(II) and Gold(III) Complexes as Antitumour Agents,” Dalton Transactions, No. 12, 2008, pp. 1521-32. doi:10.1039/B715903J
[11] J. Reedijk, “Platinum Anticancer Coordination Compounds: Study of DNA Binding Inspires New Drug Design,” European Journal of Inorganic Chemistry, Vol. 2009, No, 10, 2009, pp. 1303-1312. doi:10.1002/ejic.200900054
[12] J. Reedijk, “Increased Understanding of Platinum Anticancer Chemistry,” Pure and Applied Chemistry, Vol. 83, No. 9, 2011, pp. 1709-1719.doi:10.1351/PAC-CON-10-11-03
[13] I. Kostova, “Gold Coordination Complexes as Anticancer Agents,” Anti-cancer Agents in Medicinal Chemistry, Vol. 6, No. 1, 2006, pp. 19-32.
[14] I. Ott and R. Gust, “Non Platinum Metal Complexes as Anti-cancer Drugs,” Archiv der Pharmazie, Vol. 340, No. 3, 2007, pp. 117-26. doi:10.1002/ardp.200600151
[15] E. R. T. Tiekink, “Anti-cancer Potential of Gold Complexes,” Inflammopharmacology, Vol. 16, No. 3, 2008, pp. 138-142. doi:10.1007/s10787-007-0018-5
[16] L. Cattaruzza, D. Fregona, M. Mongiat, L. Ronconi, A. Fassina, A. Colombatti and D. Aldinucci, “Antitumor Activity of Gold(III)-Dithiocarbamato Derivatives on Prostate Cancer Cells and Xenografts,” International Journal of Cancer, Vol. 128, No. 1, 2011, pp. 206-215.doi:10.1002/ijc.25311
[17] N. J. Wheate, S. Walker, G. E. Craig and R. Oun, “The Status of Platinum Anticancer Drugs in the Clinic and Clinical Trials,” Dalton Transactions, Vol. 39, No. 35, 2010, pp. 8113-8127. doi:10.1039/C0DT00292E
[18] C. W. Helm and J. C. States “Enhancing the Efficacy of Cisplatin in Ovarian Cancer Treatment—Could Arsenic Have a Role,” Journal of Ovarian Research, Vol. 2, No. 2, 2009, pp. 1-7. doi:10.1186/1757-2215-2-2
[19] S. Usanova, A. Piée-Staffa, U. Sied, J. Thomale, A. Schneider, B. Kaina and B. K?berle, “Cisplatin Sensitivity of Testis Tumour Cells Is Due to Deficiency in Interstrand-crosslink Repair and Low ERCC1-XPF Expression,” Molecular Cancer, Vol. 9, No. 248, 2010, pp. 1-11. doi:10.1186/1476-4598-9-248
[20] M. Dolg, “Effective Core Potentials,” In: J. Grotendorst, Ed., Modern Methods and Algorithms of Quantum Chemistry, John von Neumann Institute for Computing, Jülich, 2000, pp. 507-540.
[21] P. N. V. Pavankumar, P. Seetharamulu, S. Yao, J. D. Saxe, D. G. Reddy and F. H. Hausheer, “Comprehensive ab initio Quantum Mechanical and Molecular Orbital (MO) Analysis of Cisplatin: Structure, Bonding, Charge Density, and Vibrational Frequencies,” Journal of Computational Chemistry, Vol. 20, No. 3, 1999, pp. 365-382.doi:10.1002/(SICI)1096-987X(199902)20:3<365::AID-JCC8>3.0.CO;2-1
[22] R. Wysokiński and D. Michalska, “The Performance of Different Density Functional Methods in the Calculation of Molecular Structures and Vibrational Spectra of Platinum(II) Antitumor Drugs: Cisplatin and Carboplatin,” Journal of Computational Chemistry, Vol. 22, No. 9, 2001, pp. 901-912. doi:10.1002/jcc.1053
[23] A. M. Amado, S. M. Fiuza M. P. M. Marques and L. A. E. Batista de Carvalho, “Conformational and Vibrational Study of Platinum(II) Anticancer Drugs cis-Diamminedichloroplatinum(II) as a Case Study,” The Journal of Chemical Physics, Vol. 127, No. 18, 2007, Article ID: 185104. doi:10.1063/1.2787528
[24] S. M. Fiuza, A. M. Amado, M. P. M. Marques and L. A. E. Batista de Carvalho, “Use of Effective Core Potential Calculations for the Conformational and Vibrational Study of Platinum(II) Anticancer Drugs. cis-Diamminedichloroplatinum(II) as a Case Study,” The Journal of Physical Chemistry, Vol. 112, No. 14, 2008, pp. 32533259. doi:10.1021/jp710868p
[25] H. Gao, F. Y. Xia, C. J. Huang and K. Linc, “Density Functional Theory Calculations on the Molecular Structures and Vibration Spectra of Platinum(II) Antitumor Drugs,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 78, No. 4, 2011, pp. 1234-1239. doi:10.1016/j.saa.2010.12.003
[26] R. C. de Berrêdo and F. E. Jorge, “All-electron Double Zeta Basis Sets for Platinum: Estimating Scalar Relativistic Effects on Platinum(II) Anticancer Drugs,” Journal of Molecular Structure: THEOCHEM, Vol., 961, No. 1-3, 2010, pp. 107-112. doi:10.1016/j.theochem.2010.09.007
[27] K. Nakamoto, P. J. McCarthy, J. Fujita, R. A. Condrate and G. T. Behnke, “Infrared Studies of Ligand-Ligan Interaction in Dihalogenodiammineplatinum(II) Complexes,” Inorganic Chemistry, Vol. 4, No. 1, 1965, pp. 36-43. doi:10.1021/ic50023a008
[28] G. Raudaschl, B. Lippert, J. D. Hoeschele, H. E. Howard-Lock, C. J. L. Lock and P. Pilon, “Adduct Formation of cis-(NH3)2PtX2 (X = Cl–, I–) with Formamides and the Crystal Structures of cis-(NH3)2PtCl2(CH3)2NCHO. Application for the Purification of the Antitumor Agent Cisplatin,” Inorganica Chimica Acta, Vol. 106, No. 3, 1985, pp. 141-149. doi:10.1016/S0020-1693(00)87550-7
[29] I. A. Degen and A. J. Rowlands, “The Fourier Transform Raman Spectra of a Series of Platinum(II), Palladium(II) and Gold(III) Square-Planar Complexes,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 47, No. 9-10, 1991, pp. 1263-1268. doi:10.1016/0584-8539(91)80213-3
[30] G. H. W. Milburn and M. R. Truter, “The Crystal Structures of cisand trans-Dichlorodiammineplatinum(II),” Journal of the Chemical Society A, 1966, pp. 1609-1616. doi:10.1039/J19660001609
[31] V. P. Ting, M. Schmidman, C. C. Wilson and M. T. Weller, “Cisplatin: Polymorphism and Structural Insight into an Important Chemotherapetic Drug,” Angewandte Chemie, International Edition, Vol. 49, No. 49, 2011, pp. 9408-9411. doi: 10.1002/anie.201003185
[32] C. Adamo and V. Barone, “Exchange Functionals with Improved Long-range Behavior and Adiabatic Connection Methods without Adjustable Parameters: the mPW and mPW1PW Models,” The Journal of Chemical Physics, Vol. 108, No. 2, 1998, pp. 664-675.doi:10.1063/1.475428
[33] T. H. Dunning and P. J. Hay, “Gaussian Basis Sets for Molecular Calculations,” In: H. F. Schaefer, Ed., Methods in Electronic Structure Theory (Modern Theoretical Chemistry), Plenum Press, New York, 1977, pp. 1-28.
[34] P. J. Hay and W. R. Wadt, “Ab initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg,” The Journal of Chemical Physics, Vol. 82, No. 1, 1985, pp. 270-283.doi:10.1063/1.448799
[35] W. R. Wadt and P. J. Hay, “Ab initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi,” The Journal of Chemical Physics, Vol. 82, No. 1, 1985, pp. 284-298.doi:10.1063/1.448800
[36] P. J. Hay and W. R. Wadt, “Ab initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals,” The Journal of Chemical Physics, Vol. 82, No. 1, 1985, pp. 299-310. doi:10.1063/1.448975
[37] W. J. Hehre, R. F. Stewart and J. A. Pople, “Self-Consistent Molecular Orbital Methods. I. Use of Gaussian Expansions of Slater—Type Atomic Orbitals,” The Journal of Chemical Physics, Vol. 51 No. 6, 1969, pp. 26572664. doi:10.1063/1.1672392
[38] J. S. Binkley, J. A. Pople and W. J. Hehre, “Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements,” Journal of the American Chemical Society, Vol. 102, No. 3, 1980, pp. 939947. doi:10.1021/ja00523a008
[39] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, “Self-Consistent Molecular-Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements,” Journal of the American Chemical Society, Vol. 104, No. 10, 1982, pp. 2797-2803.doi:10.1021/ja00374a017
[40] S. H. Vosko, L. Wilk and M. Nusair, “Accurate SpinDependent Electron Liquid Correlation Energies for Local Spin Density Calculations: a Critical Analysis,” Canadian Journal of Physics, Vol. 58, No. 8, 1980, pp. 1200-1211. doi:10.1139/p80-159
[41] D. Andrae, U. H?ussermann, M. Dolg, H. Stoll and H. Preuss, “Energy-Adjusted ab initio Pseudopotentials for the 2nd and 3rd Row Transition-Elements,” Theoretical Chemistry Accounts, Vol. 77, No. 2, 1990, pp. 123-141. doi:10.1007/BF01114537
[42] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Reviews Letters, Vol. 77, No. 18, 1996, pp. 3865-3868.doi:10.1103/PhysRevLett.77.3865
[43] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, No. 11, 1992, pp. 6671-6687. doi:10.1103/PhysRevB.46.6671
[44] J. P. Perdew, K. Burke and Y. Wang, “Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-electron System,” Physical Review B, Vol. 54, No. 23, 1996, pp. 16533-16539.doi:10.1103/PhysRevB.54.16533
[45] A. A. Granovsky, “Firefly version 7.1.G,” 2009.http://classic.chem.msu.su/gran/firefly/index.html
[46] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, “General Atomic and Molecular Electronic Structure System,” Journal of Computational Chemistry, Vol. 14, No. 11, 1993, pp. 1347-1363.doi:10.1002/jcc.540141112
[47] Molekel, 2009.http://molekel.cscs.ch/wiki/pmwiki.php
[48] L. E. Roy, P. J. Hay and R. L. Martin, “Revised Basis Sets for the LANL Effective Core Potentials,” Journal of Chemical Theory and Computations, Vol. 4, No. 7, 2008, pp. 1029-1031. doi:10.1021/ct8000409
[49] W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople and J. S. Binkley, “Self-Consistent Molecular Orbital Methods. 24. Supplemented Small Split-Valence Basis Sets for Second-Row Elements,” Journal of the American Chemical Society, Vol. 104, No. 19, 1982, pp. 5039-5048. doi:10.1021/ja00383a007
[50] EMSL Basis Set Exchange Library. https://bse.pnl.gov/bse/portal
[51] D. Feller, “The Role of Databases in Support of Computational Chemistry Calculations,” Journal of Computational Chemistry, Vol. 17, No. 13, 1996, pp. 1571-1586. doi:10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
[52] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, “Basis Set Exchange: A Community Database for Computational Sciences,” Journal of Chemical Information and Modeling, Vol. 47, No. 3, 2007, pp. 1045-1052. doi:10.1021/ci600510j
[53] N. I. Dodoff, M. Lalia-Kantouri, M. Gdaniec, A. Czapik, N. G. Vassilev, L. S. Markova and M. D. Apostolova, “trans-Dichloro(η2-ethylene)(N-3-pyridinylmethanesulfonamide)platinum(II). Crystal Structure, Spectroscopic, and Thermoanalytical Characterization, and Cytotoxicity Assays,” Journal of Coordination Chemistry, Vol. 65, No. 4, 2012, pp. 688-704. doi:10.1080/00958972.2012.659729
[54] R. Beattie, “Vibrational Spectra of Solids,” In: A. J. Barnes and W. J. Orville-Thomas, Eds., Vibrational Spectroscopy. Modern trends, (Russian Edition), Mir, Moscow, 1981, pp. 341-358.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.