Share This Article:

The Permutation Test as an Ancillary Procedure for Comparing Zero-Inflated Continuous Distributions

Abstract Full-Text HTML Download Download as PDF (Size:477KB) PP. 274-280
DOI: 10.4236/ojs.2012.23033    4,026 Downloads   6,581 Views   Citations


Empirical estimates of power and Type I error can be misleading if a statistical test does not perform at the stated rejection level under the null hypothesis. We employed the permutation test to control the empirical type I errors for zero-inflated exponential distributions. The simulation results indicated that the permutation test can be used effectively to control the type I errors near the nominal level even the sample sizes are small based on four statistical tests. Our results attest to the permutation test being a valuable adjunct to the current statistical methods for comparing distributions with underlying zero-inflated data structures.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Jixiang, L. Zhang and W. Johnson, "The Permutation Test as an Ancillary Procedure for Comparing Zero-Inflated Continuous Distributions," Open Journal of Statistics, Vol. 2 No. 3, 2012, pp. 274-280. doi: 10.4236/ojs.2012.23033.


[1] D. M. Titterington, A. F. Smith and U. E. Makov, “Statistical Analysis of Finite Mixture Distributions,” John Wiley and Sons, New York, 1985.
[2] J. Lawless, “Negative Binomial and Mixed Poisson Regression,” Canadian Journal of Statistics, Vol. 15, No. 3, 1987, pp. 209-225. doi:10.2307/3314912
[3] D. C. Heibron, “Generalized Linear Models for Altered Zero Probability and Overdispersion in Count Data,” SIMS Technical Report No. 9, University of California, San Francisco, 1989.
[4] R. Schall, “Estimation in Generalized Linear Models with Random Effects,” Biometrika, Vol. 78, No. 4, 1991, pp. 719-727. doi:10.1093/biomet/78.4.719
[5] C. E. McCulloch, “Maximum Likelihood Algorithms for Generalized Linear Mixed Models,” Journal of American Statistical Association, Vol. 92, No. 437, 1997, pp. 162- 170.
[6] D. B. Hall, “Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study,” Biometrics, Vol. 56, No. 4, 2000, pp. 1030-1039. doi:10.1111/j.0006-341X.2000.01030.x
[7] L. Zhang, J. Wu and W. D. Johnson, “Empirical Study of Six Tests for Equality of Populations with Zero-Inflated Continuous Distributions,” Communications in Statistics —Simulation and Computation, Vol. 39, No. 6, 2010, pp. 1196-1211. doi:10.1080/03610918.2010.489169
[8] G. Casella and R. L. Berger, “Statistical Inference,” Duxbury Inc., San Francisco, 2002.
[9] A. Wald, “Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations Is Large,” Transactions in American Mathematical Society, Vol. 54, No. 3, 1943, pp. 426-482.
[10] E. S. Edgington, “Statistical Inference and Nonrandom Samples,” Psychological Series A, Vol. 66, No. 6, 1966, pp. 485-487. doi:10.1037/h0023916
[11] B. E. Wampold and N. L. Worsham, “Randomization Tests for Multiple Baseline Designs,” Behavioral Assessment, Vol. 8, 1986, pp. 135-143.
[12] R. C. Blair and W. Karniski, “An Alternative Method for Significance Testing of Waveform Difference Potentials,” Psychophysiology, Vol. 30, No. 5, 1993, pp. 518-524. doi:10.1111/j.1469-8986.1993.tb02075.x
[13] D. C. Adams and C. D. Anthony, “Using Randomization Techniques to Analyze Behavioural Data,” Animal Behaviour, Vol. 61, No. 1, 1996, pp. 733-738. doi:10.1006/anbe.2000.1576
[14] J. Ludbrook and H. Dudley, “Why Permutation Tests Are Superior to t and F Tests in Biomedical Research,” American Statistician Association, Vol. 52, No. 2, 1998, pp. 127-132.
[15] A. F. Hayes, “Randomization Tests and Equality of Variance Assumption When Comparing Group Means,” Animal Behaviour, Vol. 59, No. 3, 2000, pp. 653-656. doi:10.1006/anbe.1999.1366
[16] L. H. Koopman, “Introduction of Contemporary Statistical Methods,” 2nd Edition, Duxbury Press, Boston, 1981.
[17] J. Aitchison, “On the Distribution of a Positive Random Variable Having a Discrete Probability Mass at the Origin,” Journal of American Statistical Association, Vol. 50, No. 271, 1995, pp. 901-908.
[18] S. C. Wang, “Analysis of Zero-Heavy Data Using a Mixture Model Approach,” Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, 1998.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.