Fractionation and structural identification of antibiotic activity substances from Streptomyces herbaricolor HNS2-2

Abstract

Four groups of antibiotic activity compounds were separated and purified from the ethyl acetate fraction of a broth culture of Streptomyces herbaricolor HNS2-2.Trace analyses were performed and anti-microbial activities were determined. The antibiotic activity compounds were identified as quercetin dehydrate ①, p-hydroxyphenyl ②, 4’-hydroxyflavanone ③, and 3-hydroxyflavone ④ based on spectroscopic data. Compounds 1-4 showed significant antimicrobial activities against Staphylococcus aureus and the tobacco mosaic virus in vitro, suggesting their potential agricultural and medical applications.

Share and Cite:

Chen, L. , Li, Y. , Zhu, H. , Liu, Y. and Gao, B. (2012) Fractionation and structural identification of antibiotic activity substances from Streptomyces herbaricolor HNS2-2. Agricultural Sciences, 3, 567-571. doi: 10.4236/as.2012.34068.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Chen, L.L. and Lu, Y.X. (2005) Screening of high yielding jinggangmycin strain by microwave mutation. Biotechnology, 13, 14-15.
[2] Hesketh, A.R., Chandra, G., Shaw, A.D., Rowland, J.J., Kell, D.B., Bibb, M.J. and Chater, K.F. (2002) Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Molecular Microbiology, 46, 917-932. doi:10.1046/j.1365-2958.2002.03219.x
[3] Mellouli, L., Karray-Rebai, I., Sioud, S., Ameur-Mehdi, R.B. and Naili, B. (2004) Efficient transformation procedure of a newly isolated Streptomyces sp. TN58 strain producing antibacterial activities. Current Microbiology, 49, 400-406. doi:10.1007/s00284-004-4292-9
[4] Ramírez-Suero, M., Khanshour, A., Martinez, Y. and Rickauer, M. (2010) A study on the susceptibility of the model legume plant Medicago truncatula to the soilborne pathogen Fusarium oxysporum. European Journal of Plant Pathology, 126, 517-530. doi:10.1007/s10658-009-9560-x
[5] Ni, X.P., Li D., Yang, L.H., Huang, T.J., Li, H. and Xia, H.Z. (2011) Constructionof kanamycin B overproducing strain by genetic engineering of Streptomyces tenebrarius. Applied Microbiology and Biotechnology, 89, 723-731. doi:10.1007/s00253-010-2908-5
[6] Kavitha, A. and Vijayalakshmi, M. (2011) Partial purifi- cation and anti-fungal profile of chitinase produced by Streptomyces tendae TK-VL_333. Annals of Microbiology, 61, 597-603. doi:10.1007/s13213-010-0178-1
[7] Tian, X.W., Long, J.Y., Bai, H.J. and Wu, W.J. (2004) Studies on the fungicidal activity of secondary metabolic products of actinomycetes. Plant Protection, 30, 51-54.
[8] Ershov, Y.V. (2007) 2-C-methylerythritol phosphate pathway of isoprenoid biosynthesis as a target in identifying new antibiotics, herbicides, and immu-nomodulators: A review. Applied Biochemistry and Mi-crobiology, 43, 115- 138. doi:10.1134/S0003683807020019
[9] Chen, L.L, Gao, B.D and Yi, T.Y. (2008) Antiviral Activity and identification of Streptomyces strain HNS2-2. Chinese Journal of Biological Control, 24, 69-74.
[10] Chen, L.L., Gao, B.D., Liu X.Y. and Chen, D.C. (2009) Preliminary study on physical chemical character of Streptomycete HNS2-2 antimicrobial activity. Biotechnology, 19, 29-32.
[11] Satterfield, M. and Brodbelt, J.S. (2001) Structural characterization of flavonoid glycosides by collisionally activated dissociation of metal complexes. Journal of the American Society for Mass Spectrometry, 12, 537-549. doi:10.1016/S1044-0305(01)00236-7
[12] Mikstacka, R., Rimando, A.M. and Ignatowicz, E. (2010) Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods for Human Nutrition, 65, 57-63. doi:10.1007/s11130-010-0154-8
[13] Fedorova, T.E., Ivanova, S.Z. and Babkin, V.A. (2010) Spiroflavonoid compounds: Structure and distribution in nature review. Russian Journal of Bioorganic Chemistry, 36, 793-801. doi:10.1134/S1068162010070022
[14] Calderone, V., Chericoni, S., Martinelli, C., Testai, L. and Nardi, A. (2004) Vasorelaxing effects of flavonoids: Investigation on the possible involvement of potassium channels. Naunyn-Schmiedeberg’s Archives of Pharmacology, 370, 290-298. doi:10.1007/s00210-004-0964-z
[15] Tyukavkina, N.A., Pogodaeva, N.N., Brodskaya, E.I. and Sapozhnikov, Y.M. (1975) Ultraviolet absorption of flavonoids. V. The structure of 3- and 5-hydroxyflavones. Chemistry of Natural Compounds, 11, 613-616. doi:10.1007/BF00567696
[16] Maciejewicz, W. and Soczewinski, E. (2000) Chemometric characterization of TLC systems of the type silica-binary non-aqueous mobile phase in the analysis of flavonoids. Chromato-graphia, 51, 473-477. doi:10.1007/BF02490487
[17] Kim, B.-G., Sung, S.H., Chong, Y., Lim, Y. and Ahn, J.-H. (2010) Plant flavonoid O-methyltransferases: Substrate specificity and application. Journal of Plant Biology, 53, 321-329. doi:10.1007/s12374-010-9126-7
[18] Ferrer, J.L., Austin, M.B., Stewart, C.J. and Noel, J.P. (2008) Structure and function of enzymes involved in the biosynthesis of phe-nylpropanoids. Plant Physiology and Biochemistry, 46, 356-370. doi:10.1016/j.plaphy.2007.12.009
[19] Nissler, L., Gebhardt, R. and Berger, S. (2004) Flavonoid binding to a multi-drug resistance transporter protein: An STD-NMR study. Analytical and Bioanalytical Chemistry, 379, 1045-1049. doi:10.1007/s00216-004-2701-3
[20] Novák, K., Lisá, L. and Skrdleta, V. (2004) Rhizobial nod gene-inducing activity in pea nodulation mutants, dissociation of nodulation and flavonoid response. Physiologia Plantarum, 120, 546-555. doi:10.1111/j.0031-9317.2004.0278.x
[21] Lozovaya, V.V., Lygin, A.V., Zernova, O.V., Ulanov, A.V., Li, S., Hartman, G.L. and Widholm J.M. (2007) Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isofla- vone synthase. Planta, 225, 665-679. doi:10.1007/s00425-006-0368-z
[22] Shimada, N., Sato, S., Akashi, T., Nakamura, Y., Tabata, S., Ayabe, S. and Aoki, T. (2007) Genome-wide analyses of the structural gene families involved in the legume- specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus. DNA Research, 14, 25-36. doi:10.1093/dnares/dsm004
[23] Naoumkina, M., Farag, M.A., Sumner, L.W., Tang, Y., Liu, C.J. and Dixon, R.A. ( 2007) Inaugural article, different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 104, 17909-17915. doi:10.1073/pnas.0708697104
[24] Bajpai, V.K., Yoon, J.I. and Kang, S.C. (2009) Antifungal potential of essential oil and various organic extracts of Nandina domestica Thunb. against skin infectious fungal pathogens. Applied Microbiology and Biotechnology, 83, 1127-1133. doi:10.1007/s00253-009-2017-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.