Share This Article:

Electrical Conductivity of Collapsed Multilayer Graphene Tubes

Abstract Full-Text HTML Download Download as PDF (Size:442KB) PP. 53-57
DOI: 10.4236/wjnse.2012.22009    7,767 Downloads   11,049 Views   Citations
Author(s)    Leave a comment


Synthesis of multilayer graphene on copper wires by a chemical vapor deposition method is reported. After copper etching, the multilayer tube collapses forming stripes of graphitic films, their electrical conductance as a function of temperature indicate a semiconductor-like behavior. Using the multilayer graphene stripes, a cross junction is built and owing to its electrical behavior we propose that a tunneling process exists in the device.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Mendoza, "Electrical Conductivity of Collapsed Multilayer Graphene Tubes," World Journal of Nano Science and Engineering, Vol. 2 No. 2, 2012, pp. 53-57. doi: 10.4236/wjnse.2012.22009.


[1] J. O. Sofo, A. S. Chaudhari and G. D. Barber, “Graphane: A Two-Dimensional Hydrocarbon,” Physical Review B, Vol. 75, No. 15, 2007, Article ID: 153401. doi:10.1103/PhysRevB.75.153401
[2] R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov and A. K. Geim, “Fluorographene: A Two-Dimensional Counterpart of Teflon,” Small, Vol. 6, No. 24, 2010, pp. 2877-2884. doi:10.1002/smll.201001555
[3] X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo and H. Dai, “Graphene Nanoribbons with Smooth Edges Behave as Quantum Wires,” Nature Nanotechnology, Vol. 6, No. 9, 2011, pp. 563-567. doi:10.1038/nnano.2011.138
[4] D. Yu, E. M. Lupton, M. Liu, W. Liu and F. Liu, “Collective Magnetic Behavior of Graphene Nanohole Superlattices,” Nano Research, Vol. 1, No. 1, 2008, pp. 56-62. doi:10.1007/s12274-008-8007-6
[5] W. Lu, Z. F. Wang, Q. W. Shi, J. Yang and F. Liu, “Band-Gap Scaling of Graphene Nanohole Superlattices,” Physical Review B, Vol. 80, No. 23, 2009, Article ID: 233405. doi:10.1103/PhysRevB.80.233405
[6] P. Y. Chen and A. Alu, “ Atomically Thin Surface Cloak Using Graphene Monolayers,” ACS NANO, Vol. 5, No. 7, 2011, pp. 5855-5863. doi:10.1021/nn201622e
[7] A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science, Vol. 332, No. 6035, 2011, pp. 1291-1294. doi:10.1126/science.1202691
[8] G. Gao, T. Cagin and W. A. Goddard, “Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes,” Nanotechnology, Vol. 9, No. 3, 1998, pp. 184-191. doi:10.1088/0957-4484/9/3/007
[9] P. E. Lamert, P. Zhang and V. H. Crespi, “Gapping by Squashing: Metal-Insulator and Insulator-Metal Transitions in Collapsed Carbon Nanotubes,” Physical Review Letters, Vol. 84, No. 11, 2000, pp. 2453-2456. doi:10.1103/PhysRevLett.84.2453
[10] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutu, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, Vol. 324, No. 5932, 2009, pp. 1312-1314. doi:10.1126/science.1171245
[11] A. W. Robertson and J. H. Warner, “Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils,” Nano Letters, Vol. 11, No. 3, 2011, pp. 1182-1189. doi:10.1021/nl104142k
[12] R. Wang, Y. Hao, Z. Wang, H. Gong and J. T. L. Thong, “Large-Diameter Graphene Nanotubes Synthesized Using Ni Nanowire Templates,” Nano Letters, Vol. 10, No. 12, 2010, pp. 4844-4850. doi:10.1021/nl102445x
[13] C. Bautista and D. Mendoza, “Multilayer Graphene Synthesized by CVD Using Liquid Hexane as the Carbon Precursor,” World Journal of Condensed Matter Physics, Vol. 1, No. 4, 2011, pp. 157-160. doi:10.4236/wjcmp.2011.14023
[14] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, Vol. 320, No. 5881, 2008, p. 1308. doi:10.1126/science.1156965
[15] S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang and R. S. Ruoff, “Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-Ni Alloy Foils,” Nano Letters, Vol. 11, No. 9, 2011, pp. 3519-3525. doi:10.1021/nl201699j
[16] M. Müller, M. Br?uninger and B. Trauzettel, “Temperature Dependence of the Conductivity of Ballistic Graphene,” Physical Review Letters, Vol. 103, No. 19, 2009, Article ID: 196801. doi:10.1103/PhysRevLett.103.196801
[17] S. Adam and M. D. Stiles, “Temperature Dependence of the Diffusive Conductivity of Bilayer Graphene,” Physical Review B, Vol. 82, No. 7, 2010, Article ID: 075423. doi:10.1103/PhysRevB.82.075423
[18] P. R. Wallace, “The Band Theory of Graphite,” Physical Review, Vol. 71, No. 9, 1947, pp. 622-634. doi:10.1103/PhysRev.71.622
[19] E. L. Wolf, “Principles of Electron Tunneling Spectroscopy,” Oxford University Press, New York, 1989.
[20] M. S. Dresselhaus and G. Dresselhaus, “Intercalation Compounds of Graphite,” Advances in Physics, Vol. 30, No. 2, 1981, pp. 139-326. doi:10.1080/00018738100101367
[21] D. Allor, T. D. Cohen and D. A. McGady, “Schwinger Mechanism and Graphene,” Physical Review D, Vol. 78, No. 9, 2008, Article ID: 096009. doi:10.1103/PhysRevD.78.096009
[22] R. Rosenstein, M. Lewkowicz, H. C. Kao and Y. Korniyenko, “Ballistic Transport in Graphene Beyond Linear Response,” Physical Review B, Vol. 81, No. 4, 2010, Article ID: 041416. doi:10.1103/PhysRevB.81.041416
[23] B. Dóra and R. Moessner, “Nonlinear Electric Transport in Graphene: Quantum Quench Dynamics and the Schwinger Mechanism,” Physical Review B, Vol. 81, No. 16, 2010, Article ID: 165431. doi:10.1103/PhysRevB.81.165431
[24] N. Vandecastle, A. Barreiro, M. Lazzeri, A. Bachtold and F. Mauri, “Current-Voltage Characteristics of Graphene Devices: Interplay between Zenner-Klein Tunneling and Defects,” Physical Review B, Vol. 82, No. 4, 2010, Article ID: 045416. doi:10.1103/PhysRevB.82.045416

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.