Share This Article:

χc and χb States in Hot Quark-Gluon Plasma

Abstract Full-Text HTML Download Download as PDF (Size:381KB) PP. 483-491
DOI: 10.4236/jmp.2012.36065    2,326 Downloads   4,272 Views   Citations

ABSTRACT

We have studied the dissociation phenomenon of 1p states (χc and χb) of the charmonium and bottomonium spectra in a hot QCD medium. This study employed a medium modified heavy quark potential encoding the medium effects in the dielectric function to the full Cornell potential. The medium modified potential has a quite different form in the sense that it has a long range Coulomb tail in addition to the usual Yukawa term even above the deconfinement temperature. We further study the flavor dependence of their binding energies and explore the nature of dissociation by employing the perturbative, non-perturbative, and the lattice parametrized form of the Debye masses in the medium-modified potential. Interestingly, perturbative result of the Debye mass predicts the dissociation temperatures closer to the results obtained in lattice correlator studies whereas the lattice parametrized form of the Debye masses gives the results closer to the current theoretical works based on potential studies.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Patra, L. Devi, U. Kakade, V. Agotiya and V. Chandra, "χc and χb States in Hot Quark-Gluon Plasma," Journal of Modern Physics, Vol. 3 No. 6, 2012, pp. 483-491. doi: 10.4236/jmp.2012.36065.

References

[1] [1] J. Adams, et al., “Particle-Type Dependence of Azimuthal Anisotropy and Nuclear Modification of Particle Production in Au+Au Collisions at √sNN = 200?GeV,” Physical Review Letters, Vol. 92, No. 5, 2004, Article ID: 052302. doi:10.1103/PhysRevLett.92.052302
[2] [2] PHENIX Collaboration, K. Adcox, et al., “Single Identified Hadron Spec- tra from √sNN = 130 GeV Au+Au Collisions,” Physical Review C, Vol. 69, No. 2, 2004, Article ID: 024904. doi:10.1103/PhysRevC.69.024904
[3] [3] I. Arsene, et al., “Cen- trality Dependent Particle Production at y = 0 and y~1 in Au+Au Collisions at √sNN = 200 GeV,” Physical Review C, Vol. 72, No. 1, 2005, Article ID: 014908. doi:10.1103/PhysRevC.72.014908
[4] [4] S. S. Adler, et al., “Elliptic Flow of Identified Hadrons in Au+Au Collisions at √sNN = 200 GeV,” Physical Review Letters, Vol. 91, No. 18, 2003, Article ID: 182301. doi:10.1103/PhysRevLett.91.182301
[5] [5] J. Adams, et al., “Azimuthal Anisotropy in Au+Au Collisions at √sNN = 200 GeV,” Physical Review C, Vol. 71, No. 1, 2005, Article ID: 014904. doi:10.1103/PhysRevC.72.014904
[6] [6] B. B. Back, et al., “Centrality and Pseudorapidity Dependence of Elliptic Flow for Charged Hadrons in Au+Au Collisions at √sNN,” Physical Review C, Vol. 72, No. 5, 2005, Article ID: 051901.
[7] [7] D. Molnar and M. Gyulassy, “Saturation of Elliptic Flow and the Transport Opacity of the Gluon Plasma at RHIC,” Nuclear Physics A, Vol. 697, No. 1-2, 2002, pp. 495-520. doi:10.1016/S0375-9474(01)01224-6
[8] [8] J. C. Collins and M. J. Perry, “Superdense Matter: Neutrons or Asymptotically Free Quarks?” Physical Review Letters, Vol. 34, No. 21, 1975, Article ID: 1353-1356. doi:10.1103/PhysRevLett.34.1353
[9] [9] E. V. Shuryak, “Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Psions,” Physics Letters B, Vol. 78, No. 1, 1978, pp. 150-153.
[10] [10] J. I. Kapusta, “QCD at High Temerature,” Physics Letters B, Vol. 148, 1979, p. 461.
[11] [11] T. Matsui and H. Satz, “J/ψ Suppression by Quark-Gluon Plasma Formation,” Physics Letters B, Vol. 178, No. 4, 1986, pp. 416-422. doi:10.1016/0370-2693(86)91404-8
[12] [12] S. Digal, P. Petreczky and H. Satz, “String Breaking and Quarkonium Dissociation at Finite Temperatures,” Physics Letters B, Vol. 514, No. 1-2, 2001, pp. 57-62. doi:10.1016/S0370-2693(01)00803-6
[13] [13] M. Asakawa, T. Hatsuda and Y. Nakahara, “Hadronic Spectral Functions above the QCD Phase Transition,” Nuclear Physics A, Vol. 715, 2003, pp. 863-866. doi:10.1016/S0375-9474(02)01526-9
[14] [14] M. Asakawa and T. Hatsuda, “J/ψ and ηc in the Deconfined Plasma from Lattice QCD,” Physical Review Letters, Vol. 92, No. 1, 2004, Article ID: 012001. doi:10.1103/PhysRevLett.92.012001
[15] [15] S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, “Behavior of Charmonium Systems after Deconfinement,” Physical Review D, Vol. 69, No. 9, 2004, Article ID: 094507. doi:10.1103/PhysRevD.69.094507
[16] [16] T. Umeda, K. Nomura and H. Matsufuru, “Charmonium at Finite Temperature in Quenched Lattice QCD,” The European Physical Journal C—Particles and Fields, Vol. 39, Suppl. 1, 2005, pp. 9-26. doi:10.1140/epjcd/s2004-01-002-1
[17] [17] H. Iida, T. Doi, N. Ishii, H. Suganuma and K. Tsumura, “Instability of a Gapless Color Superconductor with Respect to Inhomogeneous Fluctuations,” Physical Review D, Vol. 74, No. 7, 2006, Article ID: 074502. doi:10.1103/PhysRevD.74.074020
[18] [18] A. Jakovac, P. Petreczky, K. Petrov and A. Velytsky, “Quarkonium Correlators and Spectral Functions at Zero and Finite Temperature,” Physical Review D, Vol. 75, No. 1, 2006, Article ID: 014506. doi:10.1103/PhysRevD.75.014506
[19] [19] G. Aarts G, C. Allton, M. B. Oktay, M. Peardon and J. I. Skullerud, “Charmonium at High Temperature in Two- Flavor QCD,” Physical Review D, Vol. 76, No. 9, 2007, Article ID: 094513.
[20] [20] E. V. Shuryak and I. Zahed, “Toward a Theory of Binary Bound States in the Quark-Gluon Plasma,” Physical Review D, Vol. 70, No. 5, 2004, Article ID: 054507. doi:10.1103/PhysRevD.70.054507
[21] [21] W. M. Alberico, A. Beraudo, A. De Pace and A. Molinari, “Heavy Quark Bound States above Tc,” Physical Review D, Vol. 72, No. 11, 2007, Article ID: 114011. doi:10.1103/PhysRevD.72.114011
[22] [22] C. Y. Wong and H. W. Crater, “Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station,” Physical Review D, Vol. 75, No. 1, 2007, Article ID: 034505. doi:10.1103/PhysRevD.75.012001
[23] [23] D. Cabrera and R. Rapp, “T-Matrix Approach to Quarkonium Correlation Functions in the Quark-Gluon Plasma,” Physical Review D, Vol. 76, No. 11, 2007, Article ID: 114506. doi:10.1103/PhysRevD.76.114506
[24] [24] W. M. Alberico, A. Beraudo, A. De Pace, and A. Molinari, “Quarkonia in the Deconfined Phase: Effective Potentials and Lattice Correlators,” Physical Review D, Vol. 75, No. 7, 2007, Article ID: 074009. doi:10.1103/PhysRevD.75.074009
[25] [25] A. Mocsy and P. Petreczky, “Can Quarkonia Survive Deconfinement?” Physical Review D, Vol. 77, No. 1, 2008, Article ID: 014501. doi:10.1103/PhysRevD.77.014501
[26] [26] T. Umeda, “Constant Contribution in Meson Correlators at Finite Temperature,” Physical Review D, Vol. 75, No. 9, 2007, Article ID: 094502. doi:10.1103/PhysRevD.75.094502
[27] [27] W. M. Alberico, A. Beraudo, A. De Pace and A. Molinari, “Potential Models and Lattice Correlators for Quarkonia at Finite Temperature,” Physical Review D, Vol. 77, No. 1, 2008, Article ID: 017502. doi:10.1103/PhysRevD.77.017502
[28] [28] H. Satz, “Quarkonium Binding and Dissociation: The Spectral Analysis of the QGP,” Nuclear Physics A, Vol. 783, No. 1-4, 2007, 249-260. doi:10.1016/j.nuclphysa.2006.11.026
[29] [29] D. Pal, B. K. Patra and D. K. Srivastava, “Determination of the Equation of State of Quark Matter from J/ψ and r Suppression at RHIC and LHC,” The European Physical Journal C—Particles and Fields, Vol. 17, No. 1, 2000, pp. 179-186. doi:10.1007/s100520000452
[30] [30] B. K. Patra and D. K. Srivastava, “J/ψ Suppression: Gluonic Dissociation vs. Colour Screening,” Physics Letters B, Vol. 505, No. 1-4, 2001, pp. 113-118. doi:10.1016/S0370-2693(01)00348-3
[31] [31] O. Kaczmarek, F. Karsch, E. Laermann and M. Lutgemeier, “Heavy Quark Potentials in Quenched QCD at High Temperature,” Physical Review D, Vol. 62, No. 3, 2000, Article ID: 034021. doi:10.1103/PhysRevD.62.034021
[32] [32] O. Kaczmarek, F. Karsch, F. Zantow and P. Petreczky, “Static Quark-Antiquark Free Energy and the Running Coupling at Finite Temperature,” Physical Review D, Vol. 70, No. 7, 2004, Article ID: 074505. doi:10.1103/PhysRevD.70.074505
[33] [33] B. Beinlich, F. Karsch, E. Laermann and A. Peikert, “String Tension and Thermodynamics with Tree Level and Tadpole Improved Actions,” The European Physical Journal C, Vol. 6, 1999, pp. 133-140.
[34] [34] F. Karsch, E. Laermann and A. Peikert, “The Pressure in 2, 2+1 and 3 Flavour QCD,” Physics Letters B, Vol. 478, No. 4, 2000, pp. 447-455. doi:10.1016/S0370-2693(00)00292-6
[35] [35] F. Karsch, “Lattice QCD at High Temperature and the QGP,” AIP Conference Proceedings, Vol. 842, 2005, pp. 20-28.
[36] [36] D. Christine, “Precision Lattice QCD Calculations and Predictions of Fundamental Physics in Heavy Quark Systems,” Journal of Physics: Conference Series, Vol. 46, No. 1, 2006, pp. 107-121. O. Philipsen, “The QCD Phase Diagram at Zero and Small Baryon Density,” 2005.
[37] [37] M. Urs Heller, “Recent Progress in Finite Temperature Lattice QCD,” PoS LAT 2006, 2006, p. 11.
[38] [38] M. A. Stephanov, “QCD Phase Diagram: An Overview,” Pos LAT 2006, 2006, p. 24.
[39] [39] M. Cheng, et al., “The QCD Equation of State with Almost Physical Quark Masses,” Physical Review D, Vol. 77, No. 1, 2008, Article ID: 014511.
[40] [40] V. Agotiya, V. Chandra and B. K. Patra, “Dissociation of Quarkonium in a Hot QCD Medium: Modification of the Interquark Potential,” Physical Review C, Vol. 80, No. 2, 2009, Article ID: 025210. doi:10.1103/PhysRevC.80.025210
[41] [41] V. Chandra, A. Ranjan and V. Ravishankar, “On the Chromo-Electric Permittivity and Debye Screening in Hot QCD,” The European Physical Journal A—Hadrons and Nuclei, Vol. 40, No. 1, 2009, pp. 109-117. doi:10.1140/epja/i2009-10734-5
[42] [42] E. Eichten and F. Feinberg, “Spin-Dependent Forces in Quantum Chromodynamics,” Physical Review D, Vol. 23, No. 9, 1981, pp. 2724-2744. doi:10.1103/PhysRevD.23.2724
[43] [43] G. Hardekopf and J. Sucher, “Relativistic Wave Equations in Momentum Space,” Physical Review A, Vol. 30, No. 2, 1984, pp. 703-711. doi:10.1103/PhysRevA.30.703
[44] [44] J. W. Darewych and M. Horbatsch, “The Relativistic Two-Body Coulomb System,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 22, No. 7, 1989, p. 973.
[45] [45] J. W. Darewych and M. Horbatsch, “A variational Treatment of the Relativistic Two-Fermion Bound-State System in Quantum Electrodynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 23, No. 3, 1990, p. 337.
[46] [46] J. W. Darewych, M. Horbatsch and R. Kounik, “Variational Basis-State Expansion Calculation of the Mass Gap in Scalar Field Theory,” Physical Review D, Vol. 39, No. 2, 1989, pp. 499-502. doi:10.1103/PhysRevD.39.499
[47] [47] L. Kluberg and H. Satz, “Color Deconfinement and Charmonium Production Innuclear Collisions,” 2009.
[48] [48] N. Brambilla, et al., Rev. “Effective-Field Theories for Heavy Quarkonium,” Reviews of Modern Physics, Vol. 77, No. 4, 2005, pp. 1423-1496. doi:10.1103/RevModPhys.77.1423
[49] [49] R. A. Schneider, “Debye Screening at Finite Temperature Reexamined,” Physical Review D, Vol. 66, No. 3, 2002, Article ID: 036003. doi:10.1103/PhysRevD.66.036003
[50] [50] M. Laine, O. Philipsen, M. Tassler and P. Romatschke, “Real-Time Static Potential in Hot QCD,” High Energy Physics—Phenomenology, Vol. 2007, No. 3, 2007, pp. 54-73.
[51] [51] A. Beraudo, J. P. Blaizot and C. Ratti, “Real and Imaginary-Time QQ Correlators in a Thermal Medium,” Nuclear Physics A, Vol. 806, No. 1-4, 2008, pp. 312-338. doi:10.1016/j.nuclphysa.2008.03.001
[52] [52] H. Satz, “Colour Deconfinement and Quarkonium Binding,” Journal of Physics G: Nuclear and Particle Physics, Vol. 32, No. 3, 2006, p. 25. doi:10.1088/0954-3899/32/3/R01
[53] [53] C. Young and E. Shuryak, “Charmonium in Strongly Coupled Quark Gluon Plasma,” Physical Review C, Vol. 79, 2009, Article ID: 034907.
[54] [54] F. Karsch, M. T. Mehr and H. Satz, “Color Screening and Deconfinement of Bound States of Heavy Quarks,” Zeitschrift für Physik C, Vol. 37, 1988, p. 617.
[55] [55] V. V. Dixit, “Charge Screening and Space Dimension,” Modern Physics Letters A, Vol. 5, No. 4, 1990, pp. 227- 235. doi:10.1142/S0217732390000275
[56] [56] A. Nakamura and T. Saito, “Long Distance Behaviour of Quark-Antiquark Color Dependent Potentials at Finite Temperature,” Progress of Theoretical Physics, Vol. 111, 2004, pp. 733-743.
[57] [57] K. Kajantie, M. Laine, J. Peisa, A. Rajantie, K. Rummukainen and M. E. Shaposhnikov, “Nonperturbative Debye Mass in Finite Temperature QCD,” Physical Review Letters, Vol. 79, No. 17, 1997, pp. 3130-3133. doi:10.1103/PhysRevLett.79.3130
[58] [58] E. Shuryak, “Theory of Hadronic Plasma,” Journal of Experimental and Theoretical Physics, Vol. 47, 1978, pp. 212-219.
[59] [59] J. Kapusta, “Quantum Chromodynamics at High Temperature,” Nuclear Physics B, Vol. 148, No. 3-4, 1979, pp. 461-498. doi:10.1016/0550-3213(79)90146-9
[60] [60] D. Gross, R. Pisarski and L. Yaffe, “QCD and Instantons at Finite Temperature,” Reviews of Modern Physics, Vol. 53, No. 3-4, 1981, pp. 43-80. doi:10.1103/RevModPhys.53.43
[61] [61] A. Rebhan, “Non-Abelian Debye Mass at Next-to-Leading Order,” Physical Review D, Vol. 48, No. 9, 1993, pp. 3967-3970. doi:10.1103/PhysRevD.48.R3967
[62] [62] M. Laine and Y. Schroder, “Two-Loop QCD Gauge Coupling at High Temperatures,” Journal of High Energy Physics, Vol. 503, 2005, p. 67.
[63] [63] S. Huang and M. Lissia, “The Relevant Scale Parameter in the High Temperature Phase of QCD,” Nuclear Physics B, Vol. 438, No. 1-2, 1995, pp. 54-66. doi:10.1016/0550-3213(95)00007-F
[64] [64] A. Mocsy and P. Petreczky, “,” Physical Review Letters, Vol. 99, No. 21, 2007, Article ID: 211602. doi:10.1103/PhysRevLett.99.211602
[65] [65] D. Kharzeev, L. D. McLerran and H. Satz, “Non-Perturbative Quarkonium Dissociation in Hadronic Matter,” Physics Letters B, Vol. 356, No. 2-3, 1995, pp. 349-353. doi:10.1016/0370-2693(95)00695-H
[66] [66] O. Kazmarek and F. Zantow, “The Screening Length in Hot QCD,” PoS LAT 2005, 2006, p. 177.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.