Score based assessment of implant-related post fusion MRI artifacts focused on different interbody disc spacers: An in vitro study

Abstract

Interbody disc spacers for anterior spine fusion are made of different materials, such as titanium alloys or carbon fiber reinforced polymers (CFRP). Implant-related susceptibility artifacts can decrease the quality of MRI scans. This cadaveric study aimed to demonstrate the extent that implant-related MRI artifacting affects the post fusion differentiation of the spinal canal (SC) and intervertebral disc space (IDS). In 6 cadaveric porcine spines, we evaluated the post-im- plantation MRI scans of a titanium and CFRP spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into regions of interest (ROI) to characterize the SC and IDS. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists artifact-affected image quality of the median MRI slice was rated on a modified score of 0-1-2-3. A maximum score of 15 points for the SC and 9 points for the IDS (100%) was possible. Turbo spin echo sequences produced the best scores for both spacers and the control. Only the control achieved a score of 100%. For the IDS the titanium and CFRP spacer maximally scored 0% and 74%, for the SC 80% and 99%, respectively. By using favored T1 TSE sequences the CFRP-spacer represented clear advantages in post fusion spinal imaging. Independent of artifact dimensions the used scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.

Share and Cite:

Ernstberger, T. , Heidrich, G. , Klinger, H. and Baums, M. (2012) Score based assessment of implant-related post fusion MRI artifacts focused on different interbody disc spacers: An in vitro study. Open Journal of Clinical Diagnostics, 2, 23-29. doi: 10.4236/ojcd.2012.22005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Van Goethem J.W., Parizel P.M. and Jinkins J.R. (2002) Review article: MRI of the postoperative lumbar spine. Neuroradiology, 44, 723-39. doi:10.1007/s00234-002-0790-2
[2] Fellner C., Behr M., Fellner F., Held P., Handel G. and Feuerbach S. (1997) Artifacts in MR imaging of the temporomandibular joint caused by dental alloys: A phantom model study at 1.5 T. Fortschr R?ntgenstr, 166, 421-428. doi:10.1055/s-2007-1015452
[3] Fritzsche S., Thull R. and Haase A. (1994) Reduction of artifacts in magnetic resonance images by using optimized materials for diagnostic devices and implants. Biomedizinische Technik, Berlin, 39, 42-46. doi:10.1515/bmte.1994.39.3.42
[4] Ortiz O., Pait T.G., McAllister P. and Sauter K. (1996) Postoperative MRI with titanium implants of the thoracic and lumbar spine. Neurosurgery, 38, 741-745. doi:10.1227/00006123-199604000-00022
[5] Herold T., Caro W.C., Heers G., Perlick L., Grifka J., Feuerbach S., Nitz W. and Lenhart M. (2004) Influence of sequence type on the extent of the susceptibility artifact in MRI: A shoulder specimen study after suture anchor repair. Fortschr R?ntgenstr, 176, 1296-1301. doi:10.1055/s-2004-813404
[6] Ernstberger T., Heidrich G., Bruening T., Krefft S., Buchhorn G. and Klinger H.M. (2007) The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting. European Spine Journal, 16, 179-185. doi:10.1007/s00586-006-0064-5
[7] Brantigan J.W. and Steffee A.D. (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine, 18, 2106-2107. doi:10.1097/00007632-199310001-00030
[8] Goulet J.A., Senunas L.E., DeSilva G.L. and Greenfield M.L. (1997) Autogenous iliac crest bone graft. Complications and functional assessment. Clinical Orthopaedics, 339, 76-81. doi:10.1097/00003086-199706000-00011
[9] Summers B.N. and Eisenstein S.M. (1989) Donor site pain from the ilium. A complication of lumbar spine fusion. Journal of Bone and Joint Surgery British Volume, 71, 677-680.
[10] Bader R., Steinhauser E., Rechl H., Siebels W., Mittelmeier W. and Gradinger R. (2003) Carbon fiber-reinforced plastics as implant materials. Der Orthopade, 32, 32-40. doi:10.1007/s00132-002-0410-1
[11] Weiner B.K. and Fraser R.D. (1998) Spine update lumbar interbody cages. Spine, 23, 634-640. doi:10.1097/00007632-199803010-00020
[12] Henk C.B., Brodner W., Grampp S., Breitenseher M., Thurnher M., Mostbeck G.H. and Imhof H. (1999) The postoperative spine. Topics Magnetic Resonance Imaging, 10, 247-264. doi:10.1097/00002142-199908000-00006
[13] Malik A.S., Boyko O., Atkar N. and Young W.F. (2001) A comparative study of MR imaging profile of titanium pedicle screws. Acta Radiologica, 42, 291-293. doi:10.1080/028418501127346846
[14] Petersilge C.A., Lewin J.S., Duerk J.L., Yoo J.U. and Ghaneyem A.J. (1996) Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. American Journal of Roentenology, 166, 12131218.
[15] Rupp R., Ebraheim N.A., Savolaine E.R. and Jackson W.T. (1993) Magnetic resonance imaging evaluation of the spine with metal implants. General safety and superior imaging with titanium. Spine, 18, 379-385. doi:10.1097/00007632-199303000-00014
[16] Wang J.C., Sandhu H.S., Yu M.D., Minchew J.T. and Delamarter R.B. (1997) MR parameters for imaging titanium spinal instrumentation. Journal of Spinal Disorders, 10, 27-32. doi:10.1097/00002517-199702000-00004
[17] Wang J.C., Yu W.D., Sandhu H.S., Tam V. and Delamarter R.B. (1998) A comparison of magnetic resonance and computed tomographic image quality after the implantation of tantalum and titanium spinal instrumentation. Spine, 23, 1684-1688. doi:10.1097/00007632-199808010-00014
[18] Vaccaro A.R., Chesnut R.M., Scuderi G., Healy J.F., Massie J.B. and Garfin S.R. (1994) Metallic spinal artifacts in magnetic resonance imaging. Spine, 19, 12371242.
[19] Rudisch A., Kremser C., Peer S., Kathrein A., Judmaier W. and Daniaux H. (1998) Metallic artifacts in magnetic resonance imaging of patients with spinal fusion: A comparison of implant materials and implant sequences. Spine, 23, 692-699. doi:10.1097/00007632-199803150-00009
[20] Thomsen M., Schneider U., Breusch S.J., Hansmann J. and Freund M. (2001) Artefacts and ferromagnetism dependent on different metal alloys in magnetic resonance imaging. An experimental study. Der Orthopade, 30, 540-544. doi:10.1007/s001320170063

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.