Share This Article:

Non-vesicle-bound free microRNAs could enter cells and affect gene expression

Abstract Full-Text HTML Download Download as PDF (Size:856KB) PP. 181-185
DOI: 10.4236/abb.2012.33026    3,743 Downloads   6,519 Views   Citations

ABSTRACT

Background: Cell-free microRNAs (miRNAs) exist in body fluid. Previous studies showed that cell-free mi-RNAs are partly bound in microvesicles, and could transfer between cells via fusion with cell membrane. Methods: We quantified the amount of a panel of mi-RNA targets in and outside microvesicles in human proximal tubular epithelial cell (HK2) medium by microarray and real-time quantitative polymerase chain reaction (RT-QPCR). Intercellular miRNA transfer was explored by medium transfer experiments. Results: We identified a portion of cell-free miRNAs that exists as non-vesicle bound, truly naked form. More importantly, these non-vesicle bound free miRNA could transfer between cells and exert biological effects. By miRNA microarray, we showed that the expression of many miRNA targets in HK-2 cells were altered, either up- or down-regulated, after exposure to extrinsic free miRNAs. The miRNA-200 family was the most affected in our model, with a corresponding alteration in the messenger RNA expression of down-stream targets including ZEB1 and vimentin. Conclusion: Our results suggest that free miRNA may serve as an intercellular messenger, a phenomenon that needs further exploration.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Wang, G. , Lai, K. , Kwa, B. , Chow, K. , Li, P. and Szeto, C. (2012) Non-vesicle-bound free microRNAs could enter cells and affect gene expression. Advances in Bioscience and Biotechnology, 3, 181-185. doi: 10.4236/abb.2012.33026.

References

[1] Bartel, D.P. (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281-297. doi:10.1016/S0092-8674(04)00045-5
[2] Vasudevan, S., Tong, Y. and Steitz, J.A. (2007) Switching from repression to activation: MicroRNAs can up-regulate translation. Science, 318, 1931-1934. doi:10.1126/science.1149460
[3] Eiring, A,M, Harb, J.G., Neviani, P., Garton, C., Oaks, J.J., Spizzo, R., et al. (2010) miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts. Cell, 140, 652-665. doi:10.1016/j.cell.2010.01.007
[4] Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15-20. doi:10.1016/j.cell.2004.12.035
[5] Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008) Characterization of microRNAs in serum: A novel class of bio-markers for diagnosis of cancer and other diseases. Cell Research, 18, 997-1006. doi:10.1038/cr.2008.282
[6] Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogoso-va-Agadjanyan, E.L., et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy Sciences USA, 105, 10513-10518.
[7] Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., et al. (2008) Serum microRNAs are promising novel biomarkers. PLoS One, 3, e3148. doi:10.1371/journal.pone.0003148
[8] Yuan, A., Farber, E.L., Rapoport, A.L., Tejada, D., Deniskin, R., Akhmedov, N.B. and Farber, D.B. (2009) Transfer of microRNAs by embryonic stem cell microve sicles. PLoS One, 4, e4722. doi:10.1371/journal.pone.0004722
[9] Hunter, M.P., Ismail, N., Zhang, X., Aguda, B.D., Lee, E.J., Yu, L., et al. (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One, 3, e3694. doi:10.1371/journal.pone.0003694
[10] Valadi, H., Ek-strom, K., Bossios, A., Sjostrand, M., Lee, J.J. and Lotvall, J.O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of ge- netic exchange between cells. Nature Cell Biology, 9, 654-659. doi:10.1038/ncb1596
[11] Chen, T.S., Lai, R.C., Lee, M.M., Choo, A.B., Lee, C.N. and Lim, S.K. (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Research, 38, 215-224. doi:10.1093/nar/gkp857
[12] Probst, J., Weide, B., Scheel, B., Pichler, B.J., Hoerr, I., Rammensee, H.G. and Pascolo, S. (2007) Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Therapy, 14, 1175-1180. doi:10.1038/sj.gt.3302964
[13] Wolff, J.A. and Budker, V. (2005) The mechanism of naked DNA uptake and expression. Advances in Genetics, 54, 3-20. doi:10.1016/S0065-2660(05)54001-X
[14] Paterson, E.L., Kolesnikoff, N., Gregory, P.A., Bert, A.G., Khew-Goodall, Y. and Goodall, G.J. (2008) The microRNA-200 family regulates epithelial to mesenchymal transition. Scientific World Journal, 8, 901-904. doi:10.1100/tsw.2008.115
[15] Miska, E.A. (2008) Mi-croRNAs—Keeping cells in formation. Nature Cell Biology, 10, 501-502. doi:10.1038/ncb0508-501
[16] Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J. and Natarajan, R. (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy Sciences USA, 104, 3432-3437. doi:10.1073/pnas.0611192104

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.