Synthesis, characterization and photophysical properties of quinolin-8-olato chelated osmium(II) organometallics bearing a pendant imine-phenol motif and electrogeneration of trivalent analogue

Abstract

The reaction of Os(RL1)(PPh3)2(CO)Br, 1b, with qui-nolin-8-ol (HQ), 2, has furnished complexes of the type [Os(RL2)(PPh3)2(CO)(Q)], 3, in excellent yield (RL1 is C6H2O-2-CHNHC6H4R(p)-3-Me-5, RL2 is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is Me, OMe, Cl). In this process, quinolin-8-olato (Q) undergoes five-membered chelation, the iminium-phenolato function tautomerizing to the imine-phenol function. The trans geometry of the Os(PPh3)2 fragment is consistent with the occurrence of a single 31P resonance near –6.0 ppm in 3. In dichloromethane solution, 3 displays a quasireversible 3+/3 couple near 0.40 V vs. SCE (3+ is the osmium (III) analogue of 3). Coulometrically generated solutions of 3+ displays a strong absorption near 340 nm, 415 nm and 500 nm and are one-electron paramagnetic (low-spin d5, S = 1/2) and show rhombic EPR spectra in 1:1 dichloromethanetoluene solution at 77 K with g values near 2.44, 2.20, 1.83. Distortion parameters using the observed g values have been computed. Solutions of 3 absorb near 420 nm and emit near 510 nm at 298 K and 580 nm at 77 K. The fluorescence is believed to originate from the 3MLCT state.

Share and Cite:

Panda, B. (2012) Synthesis, characterization and photophysical properties of quinolin-8-olato chelated osmium(II) organometallics bearing a pendant imine-phenol motif and electrogeneration of trivalent analogue. Open Journal of Inorganic Chemistry, 2, 49-57. doi: 10.4236/ojic.2012.23008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sauvage, J.P., Collin, J.P., Chambron, J.C., Guillerez, S., Coudret, C., Balzani, V., Barigelletti, F., Cola, L.D. and Flamigni, L. (1994) Ruthenium(II) and Osmium(II) bis(terpyridine)complexes in covalentlylinked multicom ponent systems: Synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties. Chemical Review, 94, 9931019. doi:10.1021/cr00028a006
[2] Richmond, M.G. (1995) Annual survey of ruthenium and osmium for the year 1993. Coordination Chemistry Reviews, 141, 63152.
[3] Ward, M.D. (1995) Osmium 1993. Coordination Chemistry Reviews, 146, 99113. doi:10.1016/00108545(96)838914
[4] Dyson, P.J., Johnson, B.F.G. and Martin C.M. (1996) The synthesis of ruthenium and osmium carbonyl cluster with unsaturated organic rings. Cordination Chemistry Reviews, 155, 6986. doi:10.1016/S00108545(96)901770
[5] Che, C.M. and Huang, J.S. (2002) Ruthenium and osmium porphyrin carbene complexes: Synthesis, structure and connection to the metalmediated cyclopropanation of alkenes. Coordination Chemistry Reviews, 231, 151 164.
[6] Jia, G. (2007) Recent progress in the chemistry of osmium carbine and metallabenzyne complexes. Coordination Chemistry Reviews, 251, 21672187. doi:10.1016/j.ccr.2006.11.018
[7] Che, C.M., Ho, C.M. and Huang, J.S. (2007) Metal carbon multiple bonded complexes: Carbene, vinylidene and allenylidene complexes of ruthenium and osmium supported by macrocyclic ligands. Coordination Chemistry Reviews, 251, 21452166.
[8] Esteruelas, M.A., Lopez, A.M. and Olivan, M. (2007) Osmiumcarbon double bonds: Formation and reactions. Coordination Chemistry Reviews, 251, 795840. doi:10.1016/j.ccr.2006.07.08
[9] Laine, P.P., Campagna, S. and Loiseau, F. (2008) Conformationally gated photoinduced processes within photosensitizeracceptor dyads based on ruthenium(II) and osmium(II) polypyridyl complexes with an appended pyridinium group. Coordination Chemistry Reviews, 252, 25522571. doi:10.1016/j.ccr.2008.05.007
[10] Musiol, R., Jampilek, J., Nycz, J.E., Pesko, M., Carroll, J., Kralova, K., Vejsova, M., Mahony, J.O., Coffey, A., Mrozek, A. and Polanski, J. (2010) Investigating the Activity Spectrum for RingSubstituted 8Hydroxyquinoli nes. Molecules, 15, 288304; doi:10.3390/molecules15010288
[11] Sissi, C. and Palumbo, M. (2003) The quinolone family: From antibacterial to anticancer agents. Current Medicinal Chemistry—AntiCancer Agents, 3, 439450. doi:10.2174/1568011033482279
[12] Musiol, R., Jampilek, J., Buchta, V., Niedbala, H., Podeszwa, B., Palka, A., MajerzManiecka, K., Oleksyn, B. and Polanski, J. (2006) Antifungal properties of new series of quinoline derivatives. Bioorganic & Medicinal Chemistry, 14, 35923598. doi:10.1016/j.bmc.2006.01.016
[13] Gershon, H., Gershon, M. and Clarke, D.D. (2004) Synergistic mixtures of fungitoxic monochloro and dichloro 8quinolinols against five fungi. Mycopathologia, 158, 131135. doi:10.1023/B:MYCO.0000038427.42852.6a
[14] Bhaumik, C., Das, S., Maity, D. and Baitalik S. (2012) Luminescent bistridentate ruthenium(II) and osmium(II) complexes based on terpyridylimidazole ligand: Synthesis, structural characterization, photophysical, electrochemical and solvent dependence studies. Dalton Transaction, 41, 24272438. doi:10.1039/c1dt11645b
[15] Pennington, N.S., Richter, M.M. and Carlson, B. (2010) Efficient electrogenerated chemiluminescence from osmium(II) polypyridine systems containing tetraphenylarsine or diphenylphosphine ligands. Dalton Transaction, 39, 15861590. doi:10.1039/b912877h
[16] Hwang, K.C., Chen, J.L., Chi, Y., Lin, C.W., Cheng, Y.M., Lee, G.H., PiTai Chou, P.T., Lin, S.Y. and Shu, C.F. (2008) Luminescent Osmium(II) Complexes with Functionalized 2Phenylpyridine Chelating Ligands: Pre paration, Structural Analyses, and Photophysical Properties. Inorganic Chemistry, 47, 33073317. doi:10.1021/ic7023132
[17] Ghosh, P., Bag, N. and Chakravorty, A. (1996) Decarbonylative metallation of diformylphenol Schiff basses: New osmium and ruthenium organometallics incorporating the iminiumphenolato zwitterionic motif. Organome tallics, 15, 30423047. doi:10.1021/om960018b
[18] Bag, N., Choudhury, S.B., Pramanik, A., Lahiri, G.K. and Chakravorty, A. (1990) Ruthenium(II) phenolates. Synthesis and characterization of a novel fourmembered metallacycle. Inorganic Chemistry, 29, 50135015. doi:10.1021/ic00350a001
[19] Bag, N., Choudhury, S.B., Lahiri, G.K. and Chakravorty, A. (1990) A novel zwitterionic ometallated Ru(II)phe nolate. Journal of the Chemical Society, Chemical Communications, 22, 16261627.
[20] Panda, B.K. (2005) Metallacycle expansion via butadiyne/octadiyne insertion into a fourmembered ruthenium organometallics. Transition Metal Chemistry, 30, 712 719. doi:10.1007/s1124300562826
[21] Ghosh, K., Chattopadhyay, S., Pattanayak, S. and Chakravorty, A. (2001) Alkyne insertion into the RuC bond of a fourmembered metallacycle: Insertion rate and reaction pathway. Organometallics, 20, 14191423. doi:10.1021/om000649c
[22] Ghosh, K., Pattanayak, S. and Chakravorty, A. (1998) Metallacycle expansion by alkyne insertion. Chemistry of a new family of ruthenium organometallics. Organome tallics, 17, 19561960. doi:10.1021/om970917f
[23] Panda, B.K., Chattopadhyay, S., Ghosh, K. and Chakravorty, A. (2002) Isonitrile insertion into the RuO bond and migratory CC bond formation. Novel organoruthenium imidic ester and acyl species. Organometallics, 21, 27732780. doi:10.1021/om020059
[24] Panda, B.K. (2005) Structurally characterized acylruthenium organometallics bearing a pendant aldehyde function. Transition Metal Chemistry, 30, 488495. doi:10.1007/s1124300469707
[25] Panda, B.K. and Chakravorty, A. (2005) Chemistry of a family of osmium(II) metallacycles incorporating isonitrile coordination. Indian Journal of Chemistry, 44A, 11271132.
[26] Panda, B.K. and Chakravorty, A. (2005) Carbonylation of fourmembered ruthenium and osmium metallacycles incorporating an orthometallated phenolic function: New acylruthenium and arylosmium complexes. Journal of Organometallic Chemistry, 690, 31693175. doi:10.1016/j.jorganchem.2005.04.012
[27] Ghosh, P., Pramanik, A. and Chakravorty, A. (1996) Che mistry of a new family of carboxyl chelated ruthenium and osmium aryls incorporating the iminephenol motif. Organometallics, 15, 41474152. doi:10.1021/om960199h
[28] Pan, S. and Panda, B.K. (2005) Synthesis and properties of long chain carboxyl and dicarboxyl chelated ruthenium organometallics incorporating the iminephenol motif. Journal of Indian Chemical Society, 82, 1620.
[29] Ghosh, P. and Chakravorty, A. (1997) A family of ruthenium aryls incorporating η2bonded nitrite or nitrate and a pendent iminephenol function. Inorganic Chemistry, 36, 6469. doi:10.1021/ic960358p
[30] Pramanik, K., Ghosh, P. and Chakravorty, A. (1997) Syn thesis and structure of osmium(II) organometallics incorporating a fourmembered salicylideneiminium metallacycle and Osη1NO2 binding. Journal of the Chemical Society, Dalton Transactions, 9, 35533556.
[31] Chattopadhyay, S., Panda, B.K., Ghosh, K. and Chakravorty, A. (2001) A family of thioxanthato ruthenium and osmium aryls. Israel Journal of Chemistry, 41, 139144. doi:10.1560/C80W66CRQHHLGYU5
[32] Panda, B.K., Chattopadhyay, S., Ghosh, K. and Chakravorty, A. (2002) Synthesis and structure of pyridine2 thiolato ruthenium aryls bearing a pendant iminephenol function. Polyhedron, 21, 899904.
[33] Panda, B.K., Ghosh, K., Chattopadhyay, S. and Chakravorty, A. (2003) Chemistry of a new family of aryl ruthenium species incorporating αdiimine chelation and a pendant iminephenol function. Journal of Organometallic Chemistry, 674, 107115. doi:10.1016/S0022328X(03)002110
[34] Panda, B.K., Sengupta, S. and Chakravorty, A. (2004) Synthesis, structure and properties of biimidazoleche lated arylruthenium complexes. European Journal of Inorganic Chemistry, 178184. doi:10.1002/ejic20030029
[35] Panda, B.K. (2004) Synthesis, characterization and emission properties of quinolin8olato chelated ruthenium organometallics. Journal of Chemical Science, 116, 245 250. doi:10.1007/BF02708274
[36] Peacock, A.F.A., Parsons, S. and Sadler, P.J. (2007) Tun ing the hydrolytic aqueous chemistry of osmium arene complexes with N, Ochelating ligands to achieve cancer cell cytotoxicity. Journal of American Chemical Society, 129, 33483357. doi:10.1021/ja068335p
[37] Kostrhunova, H., Florian, J., Novakova, O., Peacock, A.F.A., Sadler, P.J. and Brabec V. (2008) DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cellfree media. Journal of Medicinal Chemistry, 51, 36353643. doi:10.1021/jm701538w
[38] Sinha, S., Das, P.K. and Ghosh, B.K. (1995) Synthesis and characterization of new mononitrosyl complexes of osmiumcontaining quinoline8olates. Transition Metal Chemistry, 20, 5961. doi:10.1007/BF00135403
[39] Leung, C.F., Wong, T.W., Lau, T.C. and Wong, W.T. (2005) Addition of carbenes to an Os(VI) nitride complex. European Journal of Inorganic Chemistry, 773778.
[40] Hoffman, P.R. and Caulton, K.G. (1975) Solution struc ture and dynamics of fivecoordinate d6 complexes. Jour nal of American Chemical Society, 97, 42214228. doi:10.1021/ja00848a012
[41] Sawyer, D.T. and Roberts J.L. Jr. (1974) Experimental Electrochemistry for Chemists. Wiley, New York.
[42] Rhofir, C., Vocelle, D. and Sandorfy, D. (1989) Ftir study of the protonation of a retinyl schiff base in chloroform/ methanol mixtures. Research on Chemical Intermediates, 12, 131139. doi:10.1163/156856789X00096
[43] Ghosh P. (1997) A fourmembered C, OChelate: Two families of ruthenium organometallics incorporating N???O hydrogen bonding. Polyhedron, 16, 13431349. doi:10.1016/S02775387(96)003907
[44] Griffith, J.S. (1961) The Theory of Transition Metal Ions. Cambridge University Press, Cambridge.
[45] Bhattacharyya, S. and Chakravorty, A. (1985) Electron spin resonance studies of distorted octahedral ruthenium(III) species. Proceedings of the Indian Academy of Sciences—Chemical Sciences, 95, 159167.
[46] Houten, J.V. and Watts, R.J. (1976) Temperature dependence of the photophysical and photochemical properties of the tris(2, 2'bipyridyl)ruthenium(II) ion in aqueous solution. Journal of the American Chemical Society, 98, 48534858. doi:10.1021/ja00432a028
[47] Rillema D.P., Taghdiri D.G., Jones D.S., Worl L.A., Meyaer T.J., Levy H.A. and Keller C.D. (1987) Structure and redox and photophysical properties of a series of ruthenium heterocycles based on the ligand 2,3bis(2 pyridyl) quinoxaline. Inorganic Chemistry, 26, 578585. doi:10.1021/ic00251a018

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.