Greater Expansion of IFN-γ CD4+ NKT Cells in HIV-1 Compared with HIV-2-Infected Subjects with Preserved CD4+ T Cell Counts

Abstract

Context: Human Natural Killer T cells are T lymphocytes that express an invariant αβ T cells receptors and NK cells receptors. They regulate innate and adaptive immune response but are susceptible to HIV-1 infection. Objective: We compare the frequency and the activity of NKT cells in HIV-1 and HIV-2 infected individuals with CD4+ counts greater than 500/mm3 using flow cytometry after overnight stimulation with phytohemagglutinin (PHA). Results: The frequency of NKT cells was similar between both groups and also to sero-negative control subjects. There were also no significant differences in the proportions of total NKT cells and the CD4+ NKT subset that secreted interferon gamma (IFN-γ) after polyclonal stimulation. However, there was a significantly higher frequency of IFN-γ CD4+ NKT cells in HIV-1-infected compared with HIV-2 infected subjects (p = 0.043). Conclusion: These data suggest there is no relationship between the functional activity of NKT cell subsets and the total NKT cell population in HIV infection. The expansion of IFN-γ CD4+ NKT cells in HIV-1 infection may serve as target for viral infection and may eventually result in their depletion during chronic infection.

Share and Cite:

S. V. Nuvor, H. Whittle, S. Rowland-Jones and A. Jaye, "Greater Expansion of IFN-γ CD4+ NKT Cells in HIV-1 Compared with HIV-2-Infected Subjects with Preserved CD4+ T Cell Counts," World Journal of AIDS, Vol. 2 No. 2, 2012, pp. 103-108. doi: 10.4236/wja.2012.22014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Kronenberg, “Toward an Understanding of NKT Cell Biology: Progress and Paradoxes,” Annual Review of Immunology, Vol. 23, 2005, pp. 877-900.
[2] M. J. Smyth, K. Y. Thia, S. E. Street, E. Cretney, J. A. Trapani, M. Taniguchi, et al., “Differential Tumor Surveillance by Natural Killer (NK) and NKT Cells,” The Journal of Experimental Medicine, Vol. 191, No. 4, 2000, pp. 661-668. doi:10.1084/jem.191.4.661
[3] S. Vasan and M. Tsuji, “A double-Edged Sword: The Role of NKT Cells in Malaria and HIV Infection and Immunity,” Seminars in Immunology, Vol. 22, No. 2, pp. 87-96. doi:10.1016/j.smim.2009.11.001
[4] P. Dellabona, E. Padovan, G. Casorati, M. Brockhaus and A. Lanzavecchia, “An Invariant V Alpha 24-J Alpha Q/V Beta 11 T cell Receptor Is Expressed in All Individuals by Clonally Expanded CD4-8-T Cells,” The Journal of Experimental Medicine, Vol. 180, No. 3, 1994, pp. 1171-1176. doi:10.1084/jem.180.3.1171
[5] M. Brigl and M. B. Brenner, “CD1: Antigen Presentation and T Cell Function,” Annual Review of Immunology, Vol. 22, 2004, pp. 817-890.
[6] A. Bendelac, N. Killeen, D. R. Littman and R. H. Schwartz, “A Subset of CD4+ Thymocytes Selected by MHC Class I Molecules,” Science, 263, Vol. No. 5154, 1994, pp. 1774-1778. doi:10.1126/science.7907820
[7] A. Motsinger, D. W. Haas, A. K. Stanic, L. Van Kaer, S. Joyce and D. Unutmaz, “CD1d-Restricted Human Natural Killer T Cells Are Highly Susceptible to Human Immunodeficiency Virus 1 Infection,” The Journal of Experimental Medicine, Vol. 195, No. 7, 2002, pp. 869-879. doi:10.1084/jem.20011712
[8] I. Kotsianidis, J. D. Silk, E. Spanoudakis, S. Patterson, A. Almeida, R. R. Schmidt, et al., “Regulation of Hematopoiesis in Vitro and in Vivo by Invariant NKT Cells,” Blood, Vol. 107, No. 8, 2006, pp. 3138-3144. doi:10.1182/blood-2005-07-2804
[9] O. Akbari, P. Stock, E. Meyer, M. Kronenberg, S. Sidobre, T. Nakayama, et al., “Essential Role of NKT Cells Producing IL-4 and IL-13 in the Development of Allergen-Induced Airway Hyperreactivity,” Nature Medicine, Vol. 9, No. 5, 2003, pp. 582-588. doi:10.1038/nm851
[10] C. H. Kim, B. Johnston and E. C. Butcher, “Trafficking Machinery of NKT Cells: Shared and Differential Chemokine Receptor Expression among V Alpha 24(+) V Beta 11(+) NKT Cell Subsets with Distinct Cytokine-Producing Capacity,” Blood, Vol. 100, No. 1, 2002, pp. 11-16. doi:10.1182/blood-2001-12-0196
[11] D. Unutmaz, “NKT Cells and HIV Infection,” Microbes and Infection, Vol. 5, No. 11, 2003, pp. 1041-1047. doi:10.1016/S1286-4579(03)00185-0
[12] C. A. Biron and L. Brossay, “NK Cells and NKT Cells in Innate Defense against Viral Infections,” Current Opinion in Immunology, Vol. 13, No. 4, 2001, pp. 458-464. doi:10.1016/S0952-7915(00)00241-7
[13] J. K. Sandberg, N. M. Fast, E. H. Palacios, G. Fennelly, J. Dobroszycki, P. Palumbo, et al., “Selective Loss of Innate CD4(+) V Alpha 24 Natural Killer T cells in Human Immunodeficiency Virus Infection,” Journal of Virology, Vol. 76, No. 15, 2002, pp. 7528-7534. doi:10.1128/JVI.76.15.7528-7534.2002
[14] H. J. Van Der Vliet, B. M. Von Blomberg, M. D. Hazenberg, N. Nishi, S. A. Otto, B. H. Van Benthem, et al., “Selective Decrease in Circulating V Alpha 24+V Beta 11+ NKT Cells during HIV Type 1 Infection,” The Journal of Immunology, Vol. 168, No. 3, 2002, pp. 1490-1495.
[15] M. Moll, J. Snyder-Cappione, G. Spotts, F. M. Hecht, J. K. Sandberg and D. F. Nixon, “Expansion of CD1d-Restricted NKT Cells in Patients with Primary HIV-1 Infection Treated with Interleukin-2,” Blood, Vol. 107, No. 8, 2006, pp. 3081-3083. doi:10.1182/blood-2005-09-3636
[16] M. W. Mureithi, K. Cohen, R. Moodley, D. Poole, Z. Mncube, A. Kasmar, et al., “Impairment of CD1d-Restricted Natural Killer T Cells in Chronic HIV Type 1 Clade C Infection,” AIDS Research and Human Retroviruses, Vol. 27, No. 5, 2011, pp. 501-509.
[17] S. L. Rowland-Jones and H. C. Whittle, “Out of Africa: What Can We Learn from HIV-2 about Protective Immunity to HIV-1?” Nature Immunology, Vol. 8, No. 4, 2007, pp. 329-331. doi:10.1038/ni0407-329
[18] M. F. Schim Van Der Loeff, S. Jaffar, A. A. Aveika, S. Sabally, T. Corrah, E. Harding, et al., “Mortality of HIV-1, HIV-2 and HIV-1/HIV-2 Dually Infected Patients in a Clinic-Based Cohort in the Gambia,” AIDS, Vol. 16, No. 13, 2002, pp. 1775-1783. doi:10.1097/00002030-200209060-00010
[19] N. Berry, K. Ariyoshi, S. Jaffar, S. Sabally, T. Corrah, R. Tedder, et al., “Low Peripheral Blood Viral HIV-2 RNA in Individuals with High Cd4 Percentage Differentiates HIV-2 from HIV-1 Infection,” Journal of Human Virology, Vol. 1, No. 7, 1998, pp. 457-468.
[20] L. Papagno, C. A. Spina, A. Marchant, M. Salio, N. Rufer, S. Little, et al., “Immune Activation and CD8+ T-Cell Differentiation towards Senescence in HIV-1 Infection,” PLoS Biology, Vol. 2, No. 2, 2004, p. E20. doi:10.1371/journal.pbio.0020020
[21] V. Natarajan, R. A. Lempicki, I. Sereti, Y. Badralmaa, J. W. Adelsberger, J. A. Metcalf, et al., “Increased Peripheral Expansion of Naive CD4+ T cells in Vivo after IL-2 Treatment of Patients with HIV Infection,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 16, 2002, pp. 10712-10717. doi:10.1073/pnas.162352399
[22] D. I. Godfrey, K. J. Hammond, L. D. Poulton, M. J. Smyth and A. G. Baxter, “NKT Cells: Facts, Functions and Fallacies,” Immunology Today, Vol. 21, No. 11, 2000, pp. 573-583. doi:10.1016/S0167-5699(00)01735-7
[23] J. A. Levy, “The Importance of the Innate Immune System in Controlling HIV Infection and Disease,” Trends in Immunology, Vol. 22, No. 6, 2001, pp. 312-316. doi:10.1016/S1471-4906(01)01925-1
[24] J. P. Moore, A. Trkola and T. Dragic, “Co-Receptors for HIV-1 Entry,” Current Opinion in Immunology, Vol. 9, No. 4, 1997, pp. 551-562. doi:10.1016/S0952-7915(97)80110-0
[25] J. V. Giorgi, R. H. Lyles, J. L. Matud, T. E. Yamashita, J. W. Mellors, L. E. Hultin, et al., “Predictive Value of Immunologic and Virologic Markers after Long or Short Duration of HIV-1 Infection,” Journal of Acquired Immune Deficiency Syndromes, Vol. 29, No. 4, 2002, pp. 346-355.
[26] M. D. Hazenberg, S. A. Otto, B. H. Van Benthem, M. T. Roos, R. A. Coutinho, J. M. Lange, et al., “Persistent Immune Activation in HIV-1 Infection is Associated with Progression to AIDS,” AIDS, Vol. 17, No. 13, 2003, pp. 1881-1888. doi:10.1097/00002030-200309050-00006
[27] G. Eberl and H. R. MacDonald, “Rapid Death and Regeneration of NKT Cells in Anti-Cd3epsilon- or IL-12-Treated Mice: A Major Role for Bone Marrow in NKT Cell Homeostasis,” Immunity, Vol. 9, No. 3, 1998, pp. 345-353. doi:10.1016/S1074-7613(00)80617-2
[28] S. Kojo, Y. Adachi, H. Keino, M. Taniguchi and T. Sumida, “Dysfunction of T Cell Receptor AV24AJ18+, BV11+ Double-Negative Regulatory Natural Killer T Cells in Autoimmune Diseases,” Arthritis & Rheumatism, Vol. 44, No. 5, 2001, pp. 1127-1138. doi:10.1002/1529-0131(200105)44:5<1127::AID-ANR194>3.0.CO;2-W
[29] M. Emoto, Y. Emoto and S. H. Kaufmann, “Inter-leukin-4-Producing CD4+ NK1.1+ TCR Alpha/Beta Intermediate Liver Lymphocytes Are Down-Regulated by Listeria monocytogenes,” European Journal of Immunology, Vol. 25, No. 12, 1995, pp. 3321-3325. doi:10.1002/eji.1830251218
[30] J. A. Hobbs, S. Cho, T. J. Roberts, V. Sriram, J. Zhang, M. Xu, et al., “Selective loss of Natural Killer T Cells by Apoptosis Following Infection with Lymphocytic Choriomeningitis Virus,” Journal of Virology, Vol. 75, No. 22, 2001, pp. 10746-10754. doi:10.1128/JVI.75.22.10746-10754.2001
[31] H. J. Van Der Vliet, M. G. Van Vonderen, J. W. Molling, H. J. Bontkes, M. Reijm, P. Reiss, et al., “Cutting Edge: Rapid Recovery of NKT Cells upon Institution of Highly Active Antiretroviral Therapy for HIV-1 Infection,” The Journal of Immunology, Vol. 177, No. 9, 2006, pp. 5775-5778.
[32] H. J. Van Der Vliet, H. B. Koon, S. C. Yue, B. Uzunparmak, V. Seery, M. A. Gavin, et al., “Effects of the Administration of High-Dose Interleukin-2 on Immunoregulatory Cell Subsets in Patients with Advanced Melanoma and Renal Cell Cancer,” Clinical Cancer Research, Vol. 13, No. 7, 2007, pp. 2100-2108. doi:10.1158/1078-0432.CCR-06-1662
[33] D. Unutmaz, “Reviving the Killers, All You Need Is IL2,” Blood, Vol. 107, 2006, pp. 3021-3022.
[34] N. Rout, J. G. Else, S. Yue, M. Connole, M. A. Exley and A. Kaur, “Paucity of CD4+ Natural Killer T (NKT) Lymphocytes in Sooty Mangabeys Is Associated with Lack of NKT Cell Depletion after SIV Infection,” PLoS One, Vol. 5, No. 3, 2010, p. e9787. doi:10.1371/journal.pone.0009787

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.