On the Wear Behavior of Cyanoacrylate in Presence of Nano-Sized SiO2

Abstract

Cyanoacrylate adhesive and its composites have been widely used in industry and dentistry. According to literature survey done by the authors, there are few papers concentrated on role of nano-sized particles on wear behavior of cyanoacrylate glue. Thus the main goal of current research focused on clarifying the role of nano-sized SiO2 on wear behavior of cyanoacrylate. Pin-on-disk wear test, SEM imaging and microhardness test was utilized to investigate wear performance of cyanoacrylate and its nanocomposites with SiO2. The results indicated that SiO2 nano powders can reduce wear rate of cyanoacrylate and change its wear mechanism. It was also shown that surface hardness of cyanoacrylate is increased by addition of nano-sized SiO2.

Share and Cite:

A. Yaghmaei, S. Zebarjad and M. Kashefi, "On the Wear Behavior of Cyanoacrylate in Presence of Nano-Sized SiO2," Engineering, Vol. 4 No. 5, 2012, pp. 245-251. doi: 10.4236/eng.2012.45032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Dasari, Z. Z. Yu and Y. W. Mai, “Fundamental Aspect and Recent Progress on Wear/Scratch Damage in Polymer Nanocomposites,” Materials Science and Engineering: R: Reports, Vol. 63, No. 2, 2009, pp. 31-80. doi:10.1016/j.mser.2008.10.001
[2] J. Song and G. W. Ehresntein, “Friction and Wear of Self-Reinforced Thermoplastics,” In: K. Friedrich, Ed., Advances in Composite Tribology, Elsevier, Amsterdam, 1993, pp. 19-61.
[3] R. A. Vaia and R. Krishnamoorti, “Polymer Nanocomposites: Synthesis, Characterization, and Modeling,” American Chemical Society, Washington DC, 2002.
[4] Z.-Z. Yu, A. Dasari and Y. W. Mai, “Polymer-Clay Nanocomposites—A Review of Their Mechan-ical and Physical Properties,” In: S. G. Advani, Ed., Processing and Properties of Polymer Nanocomposites, World Scientific Publishers, Singapore, 2006, pp. 307-358. doi:10.1142/9789812772473_0007
[5] A. E. Anderson, “Friction Lubrication and Wear Technology,” ASM International, 1992.
[6] S. J. Kim, M. H. Cho, R. S. Basch, J. W. Fash and H. Jang, “Tribological Properties of Polymer Composites Containing Barite (BaSO4) or Potassium Titanate (K2O6(TiO2)),” Tribology Letters, Vol. 17, No. 3, 2004, pp. 655-661. doi:10.1023/B:TRIL.0000044516.75340.25
[7] H. Czichos, “Introduction to Friction and Wear,” In: K. Friedrich, Ed., Friction and Wear of Polymer Composites, Elsevier, 1986, pp. 1-22.
[8] G. M. Bartenev and V. V. Lavrentev, “Friction and Wear of Polymers,” Elsevier, Amsterdam, 1981.
[9] L. Chang, Z. Zhang, C. Breidt and K. Friedrich, “Tribological Properties of Epoxy Nanocomposites: I. Enhancement of the Wear Resistance by Nano-TiO2 Particles,” Wear, Vol. 258, No. 1-4, 2005, pp. 141-148. doi:10.1016/j.wear.2004.09.005
[10] S. Bahadur and C. Sunkara, “Effect of Transfer Film Structure, Composition and Bonding on the Tribological Behavior of Polyphenylene Sulfide Filled with Nano Particles of TiO2, ZnO, CuO and SiC,” Wear, Vol. 258, No. 9, 2005, pp. 1411-1421. doi:10.1016/j.wear.2004.08.009
[11] H. Jiang, R. Browning and H. J. Sue, “Understanding of Scratch-Induced Damage Mechanisms in Polymers,” Polymer, Vol. 50, No. 16, 2009, pp. 4056-4065. doi:10.1016/j.polymer.2009.06.061
[12] B. J. Briscoe, B. H. Stuart, S. Sebastian and P. J. Tweedale, “The Failure of Poly (Ether Ether Ketone) in High Speed Contacts,” Wear, Vol. 162-164, 1993, pp. 407-417. doi:10.1016/0043-1648(93)90524-P
[13] A. Dasari, “On Toughening and Wear/Scratch Damage in Polymer Nanocomposites,” The University of Sydney, Sydney, 2007.
[14] N. P. Suh, M. Mosleh and J. Arinez, “Tribology of Polyethylene Homocomposites,” Wear, Vol. 214, No. 2, 1998, pp. 231-236. doi:10.1016/S0043-1648(97)00233-0
[15] S. H. Rhee and K. C. Ludema, “Mechanisms of Formation of Polymeric Transfer Films,” Wear, Vol. 46, No. 1, 1978, pp. 231-240. doi:10.1016/0043-1648(78)90124-2
[16] B. J. Briscoe, “Materials Aspects of Polymer Wear,” Scripta Metallurgica et Materialia, Vol. 24, No. 5, 1990, pp. 839-844. doi:10.1016/0956-716X(90)90122-W
[17] P. A. Higham, F. H. Stott and B. Bethune, “The Influence of Polymer Composition on the Wear of the Metal Surface during Fretting of Steel on Polymer,” Wear, Vol. 47, No. 1, 1978, pp. 71-80. doi:10.1016/0043-1648(78)90204-1
[18] M. S. ElTobgy, E. Ng and M. A. Elbestawi, “Finite Element Modeling of Erosive Wear,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 11, 2005, pp. 1337-1346. doi:10.1016/j.ijmachtools.2005.01.007
[19] I. Finnie, “Some Reflections on the Past and Future of Erosion,” Wear, Vol. 186-187, 1995, pp. 1-10. doi:10.1016/0043-1648(95)07188-1
[20] D. Li, Q. Liu, L. Yu, X. Li and Z. Zhang, “Correlation between Interfacial Interactions and Mechanical Properties of PA-6 Doped with Surface-Capped Nano-Silica,” Applied Surface Science, Vol. 255, No. 18, 2009, pp. 7871-7877. doi:10.1016/j.apsusc.2009.04.121
[21] D. E. Setlik, D. L. Seldomridge, R. A. Adelman, T. M. Semchyshyn and N. A. Afshari, “The Effectiveness of Isobutyl Cyanoacrylate Tissue Adhesive for the Treatment of Corneal Perforations,” American Journal of Ophthalmology, Vol. 140, No. 5, 2005, pp. 920-921. doi:10.1016/j.ajo.2005.04.062
[22] D. C. Ritterband, S. W. Meskin, D. E. Shapiro, J. Kusmierczyk, J. A. Seedor and R. S. Koplin, “Laboratory Model of Tissue Adhesive (2-Octyl Cyanoacrylate) in Sealing Clear Corneal Cataract Wounds,” Amer-ican Journal of Ophthalmology, Vol. 140, No. 6, 2005, pp. 1039-1043. doi:10.1016/j.ajo.2005.06.055
[23] F. Su, Z. Zhang and W. Liu, “Mechanical and Tribological Properties of Carbon Fabric Composites Filled with Several Nano-Particulates,” Wear, Vol. 260, No. 7-8, 2006, pp. 861-868. doi:10.1016/j.wear.2005.04.015
[24] Z. Zhang, F. Su, K. Wang, W. Ging, Z. Men and W. Liu, “Study on the Friction and Wear Properties of Carbon Fabric Composites Reinforced with Micro- and Nano- Particles,” Materials Science and Engineering: A, Vol. 404, No. 1-2, 2005, pp. 251-258. doi:10.1016/j.msea.2005.05.084
[25] Q. B. Guo, M. Z. Rong, G. L. Jia, K. T. Lau and M. Q. Zhang, “Sliding Wear Performance of Nano-SiO2/Short Carbon Fiber/Epoxy Hybrid Composites,” Wear, Vol. 266, No. 7-8, 2009, pp. 658-665. doi:10.1016/j.wear.2008.08.005
[26] G. Zhang, L. Chang and A. K. Schlarb, “The Roles of Nano-SiO2 Particles on the Tribological Behavior of Short Carbon Fiber Reinforced PEEK,” Composites Science and Technology, Vol. 69, No. 7-8, 2009, pp. 1029- 1035. doi:10.1016/j.compscitech.2009.01.023
[27] H. J. Song, Z. Z. Zhang and X. H. Men, “The Tribological Behaviors of the Polyurethane Coating Filled with Nano-SiO2 under Different Lubrication Conditions,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 2, 2008, pp. 188-194. doi:10.1016/j.compositesa.2007.11.003
[28] J. S. Ridgway, J. B. Hull and C. R. Gentle, “A PRIME Approach for the Moulding of Conduit Ceramic Parts,” Journal of Materials Processing Technology, Vol. 133, No. 1-2, 2003, pp. 181-188. doi:10.1016/S0924-0136(02)00229-7
[29] O. N. Klenovich and A. M. Vetrova, “Filled Cyanoacrylate Adhesive Compositions,” Polymer Science Series C, Vol. 49, No. 1, 2007, pp. 50-51. doi:10.1134/S1811238207010110
[30] S. P. Wargacki, L. A. Lewis and M. D. Dadmun, “Enhancing the Quality of Aged Latent Fingerprints Developed by Superglue Fuming: Loss and Replenishment of Initiator,” Journal of Forensic Sciences, Vol. 53, No. 5, 2008, pp. 1138-1144. doi:10.1111/j.1556-4029.2008.00822.x
[31] A. Gupta, K. Buckley and R. Sutton, “Latent Fingermark Pore Area Repro-ducibility,” Forensic Science International, Vol. 179, No. 2-3, 2008, pp. 172-175. doi:10.1016/j.forsciint.2008.05.011
[32] G. A. Greenhill and B. O’Regan, “Incidence of Hypertrophic and Keloid Scars after N-butyl 2-Cyanoacrylate Tissue Adhesive Had Been Used to Close Parotidectomy Wounds: A Prospective Study of 100 Consecutive Patients,” British Journal of Oral and Maxillofacial Surgery, Vol. 47, No. 4, 2009, pp. 290-293. doi:10.1016/j.bjoms.2009.01.011
[33] D. C. Ritterband, S. W. Meskin, D. E. Shapiro, J. Kusmierczyk, J. A. Seedor and R. S. Koplin, “Laboratory Model of Tissue Adhesive (2-Octyl Cyanoacrylate) in Sealing Clear Corneal Cataract Wounds,” American Journal of Ophthalmology, Vol. 140, No. 6, 2005, pp. 1039-1043. doi:10.1016/j.ajo.2005.06.055
[34] J. S. Ridgway, J. B. Hull and C. R. Gentle, “Development of a Novel Binder System for Manufacture of Ceramic Heart Valve Prostheses,” Journal of Materials Processing Technology, Vol. 109, No. 1-2, 2001, pp. 161-167. doi:10.1016/S0924-0136(00)00791-3
[35] F. Leonard and G. Brandes, “Under Water Adhesive Process,” US Patent 3607542, 1971.
[36] S. Cijvan, P. M. Margetis and R. L. Reddick, “Properties of n-Butyl-α-cyanoacrylate Mixtures,” Journal of Dental Research, Vol. 48, No. 4, 1969, pp. 536-542.
[37] A. J. Bennetts, C. G. Wilde and A. D. Wilson, “Adhesive Cement,” UK Patent 2386121, 2003.
[38] S. K. Tomlinson, O. R. Ghita, R. M. Hooper, K. E. Evans, “Monomer Conversion and Hardness of Novel Dental Cements Based on Ethyl Cyanoacrylate,” Dental Materials, Vol. 23, No. 7, 2007, pp. 799-806. doi:10.1016/j.dental.2006.06.027
[39] M. Takeuchi and A. Otsuki, “Adhesive Pit and Fissure Sealant,” US Patent 4012840, 1977.
[40] J. Suffner, G. Schechner, H. Sieger and H. Hahn, “In-Situ Coating of Silica Nanoparticles with Acrylate-Based Polymers,” Chemical Vapor Deposition, Vol. 13, No. 9, 2007, pp. 459-464. doi:10.1002/cvde.200606522
[41] D. J. Boday, K. A. DeFriend, K. V. Wilson Jr., D. Coder and D. A. Loy, “Formation of Polycyanoacrylate/Silica Nanocomposites by Chemical Vapor Deposition of Cyanoacrylates on Aerogels,” Chemistry of Materials, Vol. 20, No. 9, 2008, pp. 2845-2847. doi:10.1021/cm703381e
[42] H. G. M. Edwards and J. S. Day, “Fourier Transform Raman Spectroscopic Studies of the Curing of Cyanoacrylate Glue,” Journal of Raman Spectroscopy, Vol. 35, No. 7, 2004, pp. 555-560. doi:10.1002/jrs.1184
[43] C. Birkinshaw, M. Buggy and A. O’Neill, “Reaction Moulding of Metal and Ceramic Powders,” Journal of Chemical Technology and Biotechnology, Vol. 66, No. 1, 1996, pp. 19-24. doi:10.1002/(SICI)1097-4660(199605)66:1<19::AID-JCTB458>3.3.CO;2-C
[44] R. Jacobi, H. T. Shillinbury and M. G. Dencanson, “A Comparison of the Abrasiveness of Six Ceramic Surfaces and Gold,” The Journal of Prosthetic Dentistry, Vol. 66, No. 3, 1991, pp. 303-309. doi:10.1016/0022-3913(91)90254-T
[45] J. M. Meyer and J. N. Nally, “Influence of Artificial Salivas on the Corrosion of Dental Alloys,” Journal of Dental Research, Vol. 54, 1975, pp. 678-681.
[46] T. Fusayama, T. Katayori and S. Nomoto, “Corrosion of Gold and Amalgam Placed in Contact with Each Other,” Journal of Dental Research, Vol. 42, 1963, pp. 1183- 1197. doi:10.1177/00220345630420051301
[47] H. U. Xiaqiang, P. M. Marquis and A. C. Shortall, “Two Body in Vitro Wear Study of Some Current Dental Composites and Amalgam,” Journal of Prosthetic Dentistry, Vol. 82, No. 2, 1999, pp. 214-220. doi:10.1016/S0022-3913(99)70159-9
[48] L. H. Mair, “Wear in the Mouth: The Tribological Dimension,” In: M. Addy, G. Embery, W. M. Edgar and R. Orchardson, Eds., Tooth Wear and Sensitivity, Clinical Advances in Restorative Dentistry, Martin Dunitz Ltd., London, 2000, pp. 181-188.
[49] A. Wang and G. Schmidig, “Ceramic Femoral Heads Prevent Runaway Wear for Highly Crosslinked Polyethylene Acetabular Cups by Third-Body Bone Cement Particles,” Wear, Vol. 255, No. 7-12, 2003, pp. 1054-1063.
[50] C. R. Bragdon, M. Jasty, O. K. Muratoglu, D. O. O’Connor and W. H. Harris, “Third-Body Wear of Highly Cross-Linked Polyethylene in a Hip Simulator,” The Journal of Arthroplasty, Vol. 18, No. 5, 2003, pp. 553-561. doi:10.1016/S0883-5403(03)00146-3
[51] P. Pallav, A. J de Gee, A. Werner and C. L. Davidson, “Influence of Shearing Action of Food on Contact Stress and Subsequent Wear of Stress-Bearing Composites,” Journal of Dental Research, Vol. 72, No. 1, 1993, pp. 56-61. doi:10.1177/00220345930720010801

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.