Share This Article:

Mn Effect on Nonlinear and Structural Properties of <110> Oriented PZN-4.5PT Single Crystals

Abstract Full-Text HTML Download Download as PDF (Size:1554KB) PP. 404-411
DOI: 10.4236/jmp.2012.35056    3,229 Downloads   5,704 Views   Citations

ABSTRACT

Ferroelectric single crystals Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) are promising full materials for non resonant or large bandwidth transducers due to the large values of their piezoelectric properties (d ij , k ij ) and their low mechanical quality factor (Q ij ). Many studies on <001> oriented PZN-4.5PT single crystals were carried out but it is very difficult to find research findings on <110> oriented Mn doped PZN-PT. Thus, investigations were made using XRD, Raman and EPR characterization for <110> oriented PZN-4.5PT grown through the Flux method. Mn doping effect on structural, dielectric, mechanical and piezoelectric properties with two values of Mn percentage (1 and 2 mol%) are also reported in this paper. Through the XRD study, the lattice parameters of doped PZN-PT crystals are slightly increased compared to the undoped one but the Mn didn’t change its structure. The room temperature dielectric permittivity along <110> direction is about 1572 and 1626 (respectively 1% and 2% Mn doped crystals) which are much lower than that of the undoped PZN-4.5PT (2553). The remnant polarization and coercive field of <110> oriented doped crystal measured at 1 KHz are respectively 30 μC/cm2 and 4.30 kV/cm (PZN-4.5PT), 32 μC/cm2 and 6.10 kV/cm (PZN-4.5PT + 1% Mn) and 28 μC/cm2 and 7.30 kV/cm (for the 2% Mn doped crystal). The mechanical quality factor Qm changed from 139 to 441 respectively for the pure and 1% Mn doped single crystals at room temperature while it decreases slightly to 336 for the 2 mol% Mn doped.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Kobor, M. Tine, A. Hajjaji, L. Lebrun and D. Guyomar, "Mn Effect on Nonlinear and Structural Properties of <110> Oriented PZN-4.5PT Single Crystals," Journal of Modern Physics, Vol. 3 No. 5, 2012, pp. 404-411. doi: 10.4236/jmp.2012.35056.

References

[1] L. Lebrun, et al., “Morphotropic Phase Boundary Perovskites, High Strain Piezoelectrics and Dielectric Ceramics,” Ceramics Transaction, Vol. 136, 2002, pp. 117- 126.
[2] S. Prya and K. Uchino, “Dielectric and Piezoelectric Properties of the Mn-Substituted PZNT Single Crystal,” Journal of Applied Physics, Vol. 91, No. 7, 2002, pp. 4515-4520. doi:10.1063/1.1459101
[3] T. Liu and C. S. Lynch, “Ferroelectric Properties of [110], [001] and [111] Poled Relaxor Single Crystals: Measurements and Modeling,” Acta Materiala, Vol. 51, No. 2, 2003, pp. 407-416. doi:10.1016/S1359-6454(02)00422-6
[4] S. Prya, K. Uchino and D. Viehland, “Crystal Growth and Piezoelectric Properties of Mn-Substituted Pb(Zn1/3Nb2/3) O3 Single Crystals,” Japanese Journal of Applied Physics, Vol. 40, 2001, pp. L1044-L1047. doi:10.1143/JJAP.40.L1044
[5] W. Chen and Z.-G. Ye, “Top-Cooling-Solution-Growth and Characterization of Piezoelectric 0.955Pb(Zn1/3Nb2/3) O3-0.045PbTiO3 [PZNT] Single Crystals,” Journal of Materials Science, 2001, Vol. 36, No. 8, pp. 4393-4399. doi:10.1023/A:1017914331989
[6] B. Jaffe, W. R. Cook and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London, 1971.
[7] S. Zhang, et al., “Growth and Characterization of Fe- Doped Pb(Zn1/3Nb2/3)O3-PbTiO3 Single Crystals,” Journal of Applied Physics, Vol. 93, No. 11, 2003, pp. 9257-9262. doi:10.1063/1.1571966
[8] A. Benayad, et al., “Characteristics of Pb[(Zn1/3Nb2/3)0.955 Ti0.045]O3 Single Crystals versus Growth Method,” Journal of Crystal Growth, Vol. 270, No. 1-2, 2004, pp. 137-144. doi:10.1016/j.jcrysgro.2004.06.017
[9] L. Lebrun, et al., “Dielectric and Piezoelectric Propertries of (La, Mg, F) and (Mg, Mn, F) Doped PZT Ceramic under Low and High Solicitations,” Journal of the European Ceramic Society, Vol. 21, No. 10-11, 2001, pp. 1357- 1360. doi:10.1016/S0955-2219(01)00018-8
[10] IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176- 1987.
[11] R. A. Serway, et al., “Electron Paramagnetic Resonance of Three Manganese Centers in Reduced SrTiO3,” Physical Review B, Vol. 16, No. 11, 1977, pp. 4761-4768. doi:10.1103/PhysRevB.16.4761
[12] K. A. Mu?ller, “Electron Paramagnetic Resonance of Manganese IV in SrTiO3,” Physical Review Letters, Vol. 2, 1959, pp. 341-343.
[13] D. Hennings and H. Pomplun, “Evaluation of Lattice Site and Valence of Mn and Fe in Polycrystalline PbTiO3 by Electron Spin Resonance and Thermogravimetry,” Journal of the American Ceramic Society, Vol. 57, No. 12, 1974, pp. 527-530. doi:10.1111/j.1151-2916.1974.tb10802.x
[14] J. E. Spanier, et al., “Single Crystal Mesoscopic Films of Lead Zinc Niobate—Lead Titanate: Formation and Micro-Raman Analysis,” Applied Physics Letters, Vol. 79, No. 10, 2001, pp. 1510-1512. doi:10.1063/1.1397761
[15] S. Gupta, et al., “Study of Structural Phase Transitions in Solid-Solution (1–x)PZN–xPT Relaxor Ferroelectric Using Raman Scattering,” Journal of Raman Spectroscopy, Vol. 31, No. 10, 2000, pp. 921-924. doi:10.1002/1097-4555(200010)31:10<921::AID-JRS622>3.0.CO;2-G
[16] A. Renault, “Propriétés Piézoélectriques Géantes dans les Moncristaux PZN-x%PT (x = 4,5 et 9): Relation Conditions de Polarization—Structure en Domaines,” Thesis Ecole centrale de Paris, Paris, 2002.
[17] Y. H. Chen, K. Uchino and D. Viehland, “Substituent Effects in 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Piezoelectric Ceramics,” Journal of Electroceramics, Vol. 6, No. 1, 2001, pp. 13-19. doi:10.1023/A:1011413518237
[18] Y. H. Chen, et al., “Mn Modified Pb(Mg1/3Nb2/3)O3- PbTiO3 Ceramics: Improved Mechanical Quality Factors for High-Power Transducers Applications,” Japanese Journal of Applied Physics, Vol. 39, 2000, pp. 4843-4852. doi:10.1143/JJAP.39.4843
[19] C. Jullian, J. F. Li, and D. Viehland, “Investigation of Polarization Switching in (001)c, (110)c and (111)c Oriented 0.955Pb(Zn1/3Nb2/3)O3-4.5PbTiO3 Crystals,” Journal of Applied Physics, Vol. 95, No. 10, 2004, pp. 5671- 5678. doi:10.1063/1.1699500
[20] C. S. Lynch, “The Effect of Uniaxial Stress on the Electro-Mechanical Response of 8/65/35 PLZT,” Acta Materiala, Vol. 44, No. 10, 1996, pp. 4137-4148. doi:10.1016/S1359-6454(96)00062-6

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.