A Novel Antibacterial Dental Resin Composite

Abstract

This study reports the synthesis and evaluation of a novel furanone-containing antibacterial resin composite. Compres-sive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the composites. With 5% to 30% addition of the furanone derivative, the composite showed no change in CS but a significant antibacterial activity with a 16% - 68% reduction in the S. mutans viability. Further, the antibacterial activity of the modified composite was not affected by human saliva. The aging study implies that the modified composite may have a long-lasting antibacterial function. Within the limitations of this study, it appears that this experimental resin composite may potentially be developed into a clinically attractive dental restorative due to its high mechanical strength and antibacterial function.

Share and Cite:

Y. Weng, V. J. Chong, L. Howard, R. Huang, R. L. Gregory and D. Xie, "A Novel Antibacterial Dental Resin Composite," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2, 2012, pp. 130-135. doi: 10.4236/jbnb.2012.32018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. A. Mjor, J. E. Dahl and J. E. Moorhead, “Placement and Replacement of Restorations in Primary Teeth,” Acta Odontologica Scandinavica, Vol. 60, No. 1, 2002, pp. 25-28.
[2] H. Forss and E. Widstrom, “Reasons for Restorative Therapy and Longevity of Restorations in Adults,” Acta Odontologica Scandinavica, Vol. 62, No. 2, 2004, pp. 82- 86.
[3] J. Manhart, F. Garcia-Godoy and R. Hickel, “Direct Posterior Restorations: Clinical Results and New Developments,” Dental Clinics of North America, Vol. 46, No. 2, 2002, pp. 303-339. doi:10.1016/S0011-8532(01)00010-6
[4] V. Deligeorgi, I. A. Mjor and N. H. Wilson, “An Over-view of Reasons for the Placement and Replacement of Restorations,” Primary Dental Care, Vol. 8, No. 1, 2001, pp. 5-11. doi:10.1308/135576101771799335
[5] R. G. Craig and J. M. Power, “Restorative Dental Materials,” 11th Edition, Mosby-Year Book Inc., St Louis, 2002.
[6] A. Wiegand, W. Buchalla and T. Attin, “Review on Fluoride-Releasing Restorative Materials—Fluoride Release and Uptake Characteristics, Antibacterial Activity and Influence on Caries Formation,” Dental Materials, Vol. 23, No. 3, 2007, pp. 343-362. doi:10.1016/j.dental.2006.01.022
[7] P. W. Osinaga, R. H. Grande, R. Y. Ballester, M. R. Simionato, C. R. D. Rodrigues and A. Muench, “Zinc Sulfate Addition to Glass-Ionomer-Based Cements: Influence on Physical and Antibacterial Properties, Zinc and Fluoride Release,” Dental Materials, Vol. 19, No. 3, 2003, pp. 212-217. doi:10.1016/S0109-5641(02)00032-5
[8] Y. Takahashi, S. Imazato, A. V. Kaneshiro, S. Ebisu, J. E. Frencken, F. R. Tay, “Antibacterial Effects and Physical Properties of Glass-Ionomer Cements Containing Chlorhexidine for the ART Approach,” Dental Materials, Vol. 22, No. 7, 2006, pp. 467-452. doi:10.1016/j.dental.2005.08.003
[9] K. Yamamoto, S. Ohashi, M. Aono, T. Kokubo, I. Yamada and J. Yamauchi, “Antibacterial Activity of Silver Ions Implanted in SiO2 Filler on Oral Streptococci,” Dental Materials, Vol. 12, No. 4, 1996, pp. 227-229.
[10] T. Syafiuddin, H. Hisamitsu, T. Toko, T. Igarashi, N. Goto, A. Fujishima and T. Miyazaki, “In Vitro Inhibition of Caries Around a Resin Composite Restoration Containing Antibacterial Filler,” Biomaterials, Vol. 18, No. 15, 1997, pp. 1051-1057. doi:10.1016/S0142-9612(97)88072-6
[11] B. Gottenbos, H. C. van der Mei, F. Klatter, P. Nieuwenhuis, H. J. Busscher, “In Vitro and in Vivo Antimicrobial Activity of Covalently Coupled Quaternary Ammonium Silane Coatings on Silicone Rubber,” Biomaterials, Vol. 23, No. 6, 2002, pp. 1417-1423. doi:10.1016/S0142-9612(01)00263-0
[12] P. Thebault, E. T. de Givenchy, R. Levy, Y. Vandenberghe, F. Guittard and S. Geribaldi, “Preparation and Antimicrobial Behaviour of Quaternary Ammonium Thiol Derivatives Able to Be Grafted on Metal Surfaces,” European Journal of Medicinal Chemistry, Vol. 44, No. 2, 2009, pp. 717-724. doi:10.1016/j.ejmech.2008.05.007
[13] S. Imazato, R. R. Russell and J. F. McCabe, “Antibacterial Activity of MDPB Polymer Incorporated in Dental Resin,” Journal of Dentistry, Vol. 23, No. 3, 1995, pp. 177-181. doi:10.1016/0300-5712(95)93576-N
[14] H. Murata, “Permanent, Non-Leaching Antibacterial Surfaces—2: How High Density Cationic Surfaces Kill Bacterial Cells,” Biomaterials, Vol. 28, No. 32, 2007, pp. 4870-4879. doi:10.1016/j.biomaterials.2007.06.012
[15] G. Q. Lu, D. C. Wu and R. W. Fu, “Studies on the Synthesis and Antibacterial Activities of Polymeric Quarternary Ammonium Salts from Dimethylaminoethyl Methacrylate,” Reactive and Functional Polymers, Vol. 67, No. 4, 2007, pp. 355-366. doi:10.1016/j.reactfunctpolym.2007.01.008
[16] S. B. Lee, R. R. Koepsel, S. W. Morley, K. Matyjaszewski, Y. Sun and A. J. Russell, “Permanent, Nonleaching Antibacterial Surfaces. 1. Synthesis by Atom Transfer Radical Polymerization,” Biomacromolecules, Vol. 5, No. 3, 2004, pp. 877-882. doi:10.1021/bm034352k
[17] F. Li, Z. G. Chai, M. N. Sun, F. Wang, S. Ma, L. Zhang, M. Fang and J. H. Chen, “AntiBiofilm Effect of Dental Adhesive with Cationic Monomer,” Journal of Dental Research, Vol. 88, No. 4, 2009, pp. 372-376. doi:10.1177/0022034509334499
[18] F. Li, J. Chen, Z. Chai, L. Zhang, Y. Xiao, M. Fang and S. Ma, “Effects of a Dental Adhesive Incorporating Antibacterial Monomer on the Growth, Adherence and Membrane Integrity of Streptococcus mutans,” Journal of Dentistry, Vol. 37, No. 4, 2009, pp. 289-296. doi:10.1016/j.jdent.2008.12.004
[19] N. Beyth, I. Yudovin-Farber, R. Bahir, A. J. Domb and E. I. Weiss, “Antibacterial Activity of Dental Composites Containing Quaternary Ammonium Polyethylenimine Nanoparticles against Streptococcus mutans,” Biomaterials, Vol. 27, No. 21, 2006, pp. 3995-4002. doi:10.1016/j.biomaterials.2006.03.003
[20] Y. Weng, X. Guo, V. J. Chong, L. Howard, R. L. Gregory and D. Xie, “Synthesis and Evaluation of a Novel Antibacterial Dental Resin Composite with Quaternary Ammonium Salts,” Journal of Biomechanical Science and Engineering, Vol. 4, No. 3, 2011, pp. 147-157. doi:10.4236/jbise.2011.43021
[21] S. Imazato, N. Ebi, Y. Takahashi, T. Kaneko, S. Ebisu and R. R. B. Russell, “Antibacterial Activity of Bactericide-Immobilized Filler for Resin-Based Restoratives,” Biomaterials, Vol. 24, No. 20, 2003, pp. 3605-3609. doi:10.1016/S0142-9612(03)00217-5
[22] N. Ebi, S. Imazato, Y. Noiri and S. Ebisu, “Inhibitory Effects of Resin Composite Containing Bactericide-Immobilized Filler on Plaque Accumulation,” Dental Materials, Vol. 17, No. 6, 2001, pp. 485-491. doi:10.1016/S0109-5641(01)00006-9
[23] J. H. Jung, S. Pummangura, C. Chaichantipyuth, C. Patarapanich, P. E. Fanwick, C. J. Chang and J. L. Mclaughlin, “New Bioactive Heptenes from melodorum fruticosum (Annonaceae),” Tetrahedron, Vol. 46, No. 15, 1990, pp. 5043-5054. doi:10.1016/S0040-4020(01)87811-X
[24] E. Lattmann, S. Dunn, S. Niamsanit and N. Sattayasai, “Synthesis and Antibacterial Activities of 5-Hydroxy-4- Amino-2(5H)-Furanones,” Bioorganic & Medicinal Chemistry Letters, Vol. 15, No. 4, 2005, pp. 919-921. doi:10.1016/j.bmcl.2004.12.051
[25] D. Xie, M. Faddah and J.-G. Park, “Novel Amino Acid Modified Zinc Poly-carboxylates for Improved Dental Cements,” Dental Materials, Vol. 21, No. 8, 2005, pp. 739-748. doi:10.1016/j.dental.2005.01.008
[26] J. B. Jones and J. M. Young, “Carcinogenicity of Lactones III: The Reactions of Unsaturated 4-Lactones with l-Cysteine,” Journal of Medicinal Chemistry, Vol. 11, No. 6, 1968, pp. 1176-1182. doi:10.1021/jm00312a017
[27] J. L. Drum-mond, “Degradation, Fatigue, and Failure of Resin Dental Composite Materials,” Journal of Dental Research, Vol. 87, No. 8, 2008, pp. 710-719. doi:10.1177/154405910808700802

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.