Share This Article:

A Variational Approach for Numerically Solving the Two-Component Radial Dirac Equation for One-Particle Systems

Abstract Full-Text HTML Download Download as PDF (Size:89KB) PP. 350-354
DOI: 10.4236/jmp.2012.34048    4,595 Downloads   7,855 Views   Citations

ABSTRACT

In this paper we propose a numerical approach to solve the relativistic Dirac equation suitable for computational calculations of one-electron systems. A variational procedure is carried out similar to the well-known Hylleraas computational method. An application of the method to hydrogen isoelectronic atoms is presented, showing its consistency and high accuracy, relative to the exact analytical eigenvalues.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Fonseca, D. Nascimento, F. Monteiro and M. Amato, "A Variational Approach for Numerically Solving the Two-Component Radial Dirac Equation for One-Particle Systems," Journal of Modern Physics, Vol. 3 No. 4, 2012, pp. 350-354. doi: 10.4236/jmp.2012.34048.

References

[1] J. Dolbeault, M. J. Esteban, E. Séré, and M. Van Breugel, “Minimization Methods for the One-Particle Dirac Equation,” Physical Review Letters, Vol. 85, No. 19, 2000, pp. 4020-4023. doi:10.1103/PhysRevLett.85.4020
[2] A. Rutkowski, “Iterative Solution of the One-Electron Dirac Equation Based on the Bloch Equation of the Direct Perturbation Theory,” Chemical Physics Letters, Vol. 307, No. 3-4, 1999, pp. 259-264. doi:10.1016/S0009-2614(99)00520-5
[3] J. D. Talman, “Minimax Principle for the Dirac Equation,” Physical Review Letters, Vol. 57, No. 9, 1986, pp. 1091-1094. doi:10.1103/PhysRevLett.57.1091
[4] H. H. Nakatsuji and H. Nakashima, “Analytically Solving the Relativistic Dirac-Coulomb Equation for Atoms and Molecules,” Physical Review Letters, Vol. 95, No. 5, 2005, Article ID 050407. doi:10.1103/PhysRevLett.95.050407
[5] W. Kutzelnigg, “Basis Set Expansion of the Dirac Operator without Variational Collapse,” International Journal of Quantum Chemistry, Vol. 25, No. 1, 1984, pp. 107- 129. doi:10.1002/qua.560250112
[6] A. Wolf, M. Reiher and B. A. Hess, “The Generalized Douglas-Kroll Transformation,” Journal of Chemical Physics, Vol. 117, No. 20, 2002, pp. 9215-9226. doi:10.1063/1.1515314
[7] J. Dolbeault, M. J. Esteban and E. Séré, “A variational Method for Relativistic Computations in Atomic and Molecular Physics,” International Journal of Quantum Chemistry, Vol. 93, No. 3, 2003, pp. 149-155. doi:10.1002/qua.10549
[8] R. Franke, “Numerical Study of the Iterative Solution of the One-Electron Dirac Equation Based on Direct Perturbation Theory,” Chemical Physics Letters, Vol. 264, No. 5, 1997, pp. 495-501. doi:10.1016/S0009-2614(96)01361-9
[9] A. Surzhykov, P. Koval and S. Fritzsche, “Algebraic Tools for Dealing with the Atomic Shell Model. I. Wavefunctions and Integrals for Hydrogen-Like Ions”, Computer Physics Communications, Vol. 165, No. 2, 2005, pp. 139-156. doi:10.1016/j.cpc.2004.09.004
[10] S. McConnell, S. Fritzsche and A. Surzhykov, “DIRAC: A New Version of Computer Algebra Tools for Studying the Properties and Behavior of Hydrogen-Like Ions,” Computer Physics Communications, Vol. 181, No. 3, 2010, pp. 711-713. doi:10.1016/j.cpc.2009.11.010
[11] G. W. F. Drake and S. P. Goldman, “Application of Discrete-Basis-Set Methods to the Dirac Equation,” Physical Review A, Vol. 23, No. 5, 1981, pp. 2093-2098. doi:10.1103/PhysRevA.23.2093
[12] D. L. Nascimento and A. L. A. Fonseca, “A 2D Spin Less Version of Dirac’s Equation Written in a Noninertial Frame of Reference,” International Journal of Quantum Chemistry, Vol. 111, No. 7, 2011, pp. 1361-1369. doi:10.1002/qua.22657
[13] P. A. M. Dirac, “The Quantum Theory of the Electron,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 117, No. 778, 1928, pp. 610-624. doi:10.1098/rspa.1928.0023
[14] H. Goldstein, “Classical Mechanics,” 2nd Edition, Add.- Wesley Reading Mass., New York, 1980.
[15] A. L. A. Fonseca and D. L. Nascimento, “New Approach to Researches in Relativistic Quantum Chemistry Using Hamilton-Jacobi Equation,” In: Quantum Chemistry Research Trends, Nova Science Publishers, Inc, New York, 2007, pp. 173-204.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.