Traffic Pollution Influences Leaf Biochemistries of Broussonetia papyrifera

Abstract

Paper mulberry (Broussonetia papyrifera) is one of multifunctional species in agroforestry systems as well as one of traditional forages in many countries of Asia. Fully expanded tender leaves of B. papyrifera wildly growing under two traffic densities (a high traffic loads bearing more than 1000 vehicles per hour, HT; and a relatively clear section with almost no traffic loads, NT) were collected for carbohydrates, amino acids and phytohormones analysis. Leaves exposed to traffic pollutants were revealed to have significant lower amounts of carbohydrates and total amino acids than those growing at relatively clear environment. The levels of abscisic acid in the leaves significantly increased, while gib-berellin acid, indoleaetic acid, and zeatin riboside in the leaves significantly decreased, with the traffic densities. The results indicated that the contents of carbohydrates, amino acids and phytohormones in the leaves of B. papyrifera could be adversely affected by traffic pollution. Variations of the leaf biochemistries of B. papyrifera exposed to traffic pollutants implied that B. papyrifera could physiologically regulate itself to adapt or resist traffic stress.

Share and Cite:

Kuang, Y. , Xi, D. , Li, J. , Zhu, X. & Zhang, L. (2012). Traffic Pollution Influences Leaf Biochemistries of Broussonetia papyrifera. Open Journal of Forestry, 2, 71-76. doi: 10.4236/ojf.2012.22010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Balestrasse, K. B., Gallego, S. M., Benavides, M. P., & Tomaro, M. L. (2005). Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant and Soil, 270, 343-353. doi:10.1007/s11104-004-1792-0
[2] Chandra, R., Bharagava, R. N., Yadav, S., & Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 162, 1514-1521. doi:10.1016/j.jhazmat.2008.06.040
[3] Chen, Y., Wang, S. L., & Chen, D. F. (2008). Determination of amino acids and nutrient elements in Boschniakia rossica. Amino Acids & Biotic Resources, 30, 74-76.
[4] Devi, R., Munjral, N., Gupta, A. K., & Kaur, N. (2007). Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environmental and Experimental Botany, 61, 167-174. doi:10.1016/j.envexpbot.2007.05.006
[5] Ebell, L. F. (1969). Variation in total soluble sugars of conifer tissues with method of analysis. Phytochemistry, 8, 227-233. doi:10.1016/S0031-9422(00)85818-5
[6] Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1-11. doi:10.1093/jexbot/53.366.1
[7] Hibib, G. (2004). Mulberry-fruit-based feed block: A key supplement for livestock in mountations regions. Mountain Research and Development, 24, 106-109. doi:10.1659/0276-4741(2004)024[0106:MFB]2.0.CO;2
[8] Hussein, H. S., & Terry, N. (2002). Phytomonitoring the unique colonization of oil-contaminated saline environment by Limoniastrum monopetalum (L.) Boiss in Egypt. Environment International, 28, 127-135. doi:10.1016/S0160-4120(02)00016-8
[9] Jiang, F., Jeschkem, W. D., & Hartung, W. (2003). Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. Journal of Experimental Botany, 54, 1985-1993. doi:10.1093/jxb/erg212
[10] Kume, A., Numata, S., Watanabe, K., Honoki. H., Nakajima, H., & Ishida, M. (2009). Influence of air pollution on the mountain forests along the Tateyama-Kurobe Alpine rout. Ecological Research, 24, 821-830. doi:10.1007/s11284-008-0557-2
[11] Kume, A., Tsuboi, N., Satomura, T., Suzuki, M., Chiwa, M., Nakane, K., et al. (2000). Physiological characteristics of Japanese red pine, Pinus densiflora Sieb. Et Zucc., in declined forests at Mt. Gokurakuji in Hiroshima Prefecture, Japan. Trees, 14, 305-311. doi:10.1007/PL00009772
[12] Kunzli, N., Mudway, I. S., Gotschi, T., Shi, T. M., Kelly, F. J., Cook, S., et al. (2006). Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM2.5 collected at 20 European sites. Environmental Health Perspectives, 114, 684-690. doi:10.1289/ehp.8584
[13] Kwak, W. J., Moon, T. C., Lin, X. C., Rhyn, H. G., Jung, H., Lee, E., et al. (2003). Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biological & Pharmaceutical Bulletin, 26, 299-302. doi:10.1248/bpb.26.299
[14] Lee, D., Bhat, K. P., Fong, H. H., Farnsworth, N. R., Pezzuto, J. M., & Kinghorn, A. D. (2001). Aromatase inhibitors from Broussonetia papyrifera. Journal of Natural Products, 64, 1286-1293. doi:10.1021/np010288l
[15] Li, C. R., Gan, L. J., Xia, K., Zhou, X., & Hew, C. S. (2002). Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant, Cell & Environment, 25, 369-377. doi:10.1046/j.0016-8025.2001.00818.x
[16] Li, M. R., Li, H. Q., Jiang, H. W., Wu, G. J., (2008). Establishment of a highly efficient Agrobacterium tumefaciens-mediated leaf disc transformation method for Broussonetia papyrifera. Plant Cell, Tissue & Organ Culture, 93, 249-255. doi:10.1007/s11240-008-9369-x
[17] Liao, S. X., Li, K., Yang, Z. Y., & Zhang, C. H. (2006). Influence of age on chemical components, fiber morphology and pulping properties of Broussonetia papyrifera bark. Forest Research, 19, 436-440.
[18] Malik, R. N., & Husain, S. Z. (2007). Broussonetia papyrifera (L.) L’her Vent: An environmental constraint on the Himalayan foothills vegetation. Pakistan Journal of Botany, 39, 1045-1053.
[19] Martínez, M., Mott, W., Cervera, C., & Pla, M. (2005). Feeding mulberry leaves to fattening rabbits: Effect on growth carcass characteristics and meal quality. Animal Science, 80, 275-280. doi:10.1079/ASC41110275
[20] Monni, S., Uhlig, C., Hansen, E., & Magel, E. (2001). Ecophysiological response of Empetrum nigrum to heavy metal pollution. Environmental Pollution, 112, 121-129. doi:10.1016/S0269-7491(00)00125-1
[21] Nagpal, U. M. K., Bankar, A. V., Pawar, N. J., Kapadnis, B. P., & Zinjarde, S. S. (2011). Equilibrium and kinetic studies on biosorption of heavy metals by leaf powder of paper mulberry (Broussonetia papyrifera). Water, Air & Soil Pollution, 215, 177-188. doi:10.1007/s11270-010-0468-z
[22] Saito, K., Linquist, B., Keobualapha, B., Shiraiwa, T., & Horie, T. (2009). Broussnetia papyrifera (Paper mulberry): Its growth, yield and potential as a fallow crop in slash-and burn upland rice system of northern Laos. Agroforest System, 76, 525-532. doi:10.1007/s10457-009-9206-1
[23] Sakugawa, H., Matsuda, T., & Nakatani, N. (2011). Automobile exhaust gas as a source of aqueous phase OH radical in the atmosphere and its effects on physiological status of pine trees. Chemosphere, 85, 812-819. doi:10.1016/j.chemosphere.2011.06.079
[24] Sakugawa, H., & Cape, J. N. (2007). Harmful effects of atmospheric nitrous acid on the physiological status of Scots pine trees. Environmental Pollution, 147, 532-534. doi:10.1016/j.envpol.2007.02.012
[25] Sanz, J., Bermejo, V., Muntifering, R., González-Fernández, I., Gimeno, B. S., Elvira, S., & Alonso, R. (2011). Plant phenology, growth and nutritive quality of Briza maxima: Responses induced by enhanced ozone atmospheric levels and nitrogen enrichment. Environmental Pollution, 159, 423-430. doi:10.1016/j.envpol.2010.10.026
[26] SEP-HJ482 (2009). Standard of environment protection of People’s Republic of China. Beijing: Ministry of Environmental Protection of the People’s Republic of China.
[27] SEP-HJ479 (2009). Standard of environment protection of People’s Republic of China. Beijing: Ministry of Environmental Protection of the People’s Republic of China.
[28] Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711-726. doi:10.1093/jxb/erj073
[29] Shewmaker, G. E., Mayland, H. F., Roberts, C. A., Harrison, P. A., Chatterton, N. J., & Sleper, D. A. (2006). Daily carbohydrate accumulation in eight tall fescue cultivars. Grass and Forage Science, 61, 413-421. doi:10.1111/j.1365-2494.2006.00550.x
[30] Shigihara, A., Matsumoto, K., Sakurai, N., & Igawa, M. (2008). Growth and physiological responses of beech seedlings to long-term exposure of acid fog. Science of the Total Environment, 391,124-131. doi:10.1016/j.scitotenv.2007.10.053
[31] Teng, N. J., Wang, J., Chen, T., Wu, X. Q., Wang, Y. H., & Lin, J. X. (2006). Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist, 172, 92-103. doi:10.1111/j.1469-8137.2006.01818.x
[32] Thomas, V. F. D., Braun, S., & Flückiger, W. (2006). Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica). Environmental Pollution, 143, 341354. doi:10.1016/j.envpol.2005.11.036
[33] Tripathi, A. K., & Gautam, M. (2007). Biochemical parameters of plants as indicators of air pollution. Journal of Environmental Biology, 28, 127-132. doi:10.1007/s00267-008-9093-7
[34] Updegraff, D.M. (1969). Semimicro determination of cellulose in biological materials. Analytical Biochemistry, 32, 420-424. doi:10.1016/S0003-2697(69)80009-6
[35] Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg2+ induced oxidative stress in a tolerant rice mutant. Archives of Environmental Contamination and Toxicology, 56, 723731. doi:10.1007/s00244-008-9226-2
[36] Vu, J. C. V., Newman, Y. C., Allen, L. H. Jr., Gallo-Meagher, M., & Zhang, M. Q. (2002). Photosynthetic acclimation of young sweet orange trees to elevated growth CO2 and temperature. Journal of Plant Physiology, 159, 147-157. doi:10.1078/0176-1617-00689
[37] Yang, Y. M., Xu, C. N., Wang, B. M., & Jia, J. Z. (2001). Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth and Regulation, 35, 233-237. doi:10.1023/A:1014442015872
[38] Yong, J. W. H., Wong, S. C., Letham, D. S., Hocart, C. H., & Farquhar, G. D. (2000). Effects of elevated CO2 and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiology, 124, 767-780. doi:10.1104/pp.124.2.767
[39] Zhao, J., Li, G., Yi, G. X., Wang, B. M., Deng, A. X., Nan, T. G., et al. (2006). Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Analytical Chimica Acta, 571, 79-85. doi:10.1016/j.aca.2006.04.060.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.