Share This Article:

A Direct Derivation of the Exact Fisher Information Matrix for Bivariate Bessel Distribution of Type I

Abstract Full-Text HTML Download Download as PDF (Size:139KB) PP. 276-282
DOI: 10.4236/am.2012.33043    4,301 Downloads   6,982 Views  

ABSTRACT

This paper deals with a direct derivation of Fisher’s information matrix for bivariate Bessel distribution of type I. Some tools for the numerical computation and some tabulations of the Fisher’s information matrix are provided.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Kazemi and A. Nematollahi, "A Direct Derivation of the Exact Fisher Information Matrix for Bivariate Bessel Distribution of Type I," Applied Mathematics, Vol. 3 No. 3, 2012, pp. 276-282. doi: 10.4236/am.2012.33043.

References

[1] A. T. McKay, “A Bessel Function Distribution,” Biometrika, Vol. 24, No. 1-2, 1932, pp. 39-44. doi:10.1093/biomet/24.1-2.39
[2] R. G. Laha, “On Some Properties of the Bessel Function Distributions,” Bulletin of the Calcutta Mathematical Society, Vol. 46, 1954, pp. 59-72.
[3] D. L. McLeish, “A Robust Alternative to the Normal Distribution,” Canadian Journal of Statistics, Vol. 10, No. 2, 1982, pp. 89-102. doi:10.2307/3314901
[4] F. McNolty, “Applications of Bessel Function Distributions,” Sankhya B, Vol. 29, 1967, pp. 235-248.
[5] L. Yuan and J. D. Kalbfleisch, “On the Bessel Distribution and Related Problems,” Annals of the Institute of Statistical Mathematics, Vol. 52, No. 3, 2000, pp. 438-447. doi:10.1023/A:1004152916478
[6] L. Devrore, “Non-Uniform Random Variate Generation,” Springer, New York, 1986.
[7] S. Nadarajah and S. Kotz, “Some Bivariate Bessel Distributions,” Applied Mathematics and Computation, Vol. 187, No. 1, 2007, pp. 332-339. doi:10.1016/j.amc.2006.08.130
[8] B. C. Bhattacharyya, “The Use of Mackay’s Bessel Function Curves for Graduating Frequency Distributions,” Sankhya, Vol. 6, 1942, pp. 175-182.
[9] S. Nadarajah, “FIM for Arnold and Strauss’s Bivariate Gamma Distribution,” Computational Statistics and Data Analysis, Vol. 51, No. 3, 2006, pp. 1584-1590. doi:10.1016/j.csda.2006.05.009

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.