Structural Characterization of Nanocrystalline La1-xSrxCrO3 Thick Films for H2S Gas Sensors

Abstract

The nanocrystalline of La1-xSrxCrO3 (x = 0.0, 0.1, 0.2, 0.3 & 0.4) were prepared by sol-gel method and their crystal structures & morphology were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). XRD patterns indicate that the average particle size of the nanocrystalline La0.7Sr0.3CrO3in the range of 30 - 35 nm. The gas sensing properties were studied towards reducing gases like Ammonia gas (NH3), liquefied petroleum gas (LPG), hydrogen sulphide (H2S) and H2 gas and it is observed that undoped LaCrO3 shows response to H2S gas at relatively high operating temperature 300°C. The La1-xSrxCrO3 based sensor with x = 0.3 shows better sensitivity towards H2S gas at an operating temperature 210°C. The effect of Sr doping on sensitivity, response time and recovery time of the sensor in the presence of H2S and other reducing gases were studied and discussed.

Share and Cite:

A. V. Kadu, A. B. Bodade, A. B. Bodade and G. Chaudhari, "Structural Characterization of Nanocrystalline La1-xSrxCrO3 Thick Films for H2S Gas Sensors," Journal of Sensor Technology, Vol. 2 No. 1, 2012, pp. 13-18. doi: 10.4236/jst.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. E. Williams, “Semiconducting Oxides as Gas-Sensitive Resistors,” Sensors and Actuators B, Vol. 57, No. 1-3, 1999, pp. 1-16. doi:10.1016/S0925-4005(99)00133-1
[2] N. Barsan, M. Schweizer-Berberich and W. Gopel, “Fundamental & Practical Aspects in the Design of Nanoscaled SnO2 Gas Sensors,” Fresenius’ Journal of Analytical Chemistry, Vol. 365, No. 4, 1999, pp. 287-304. doi:10.1007/s002160051490
[3] G. Sberveglieri, S. Groppelli, P. Nelli, C. Perego, G. Valdre and A. Camanzi, “Detection of Sub-ppm H2S Concentrations by SnO2 (pt) Thin Films Grown by the RGTO Technique,” Sensors and Actuators B, Vol. 55, 1998, pp. 86-89.
[4] D. J. Smith, J. F. Velelina, R. S. Falconer and E. L. Wittman, “Stability Sensitivity and Selectivity of Tungsten Trioxide Films for Sensing Applications,” Sensors and Actuators B, Vol. 13, No. 1-3, 1993, pp. 264-268. doi:10.1016/0925-4005(93)85377-M
[5] W. H. Tao and C. H. Tsai, “H2S Sensing Properties of Noble Metal Doped WO3 Thin Film Sensor Fabricated by Micromachining,” Sensors and Actuators B, Vol. 81, No. 2-3, 2002, pp. 237-247. doi:10.1016/S0925-4005(01)00958-3
[6] J. Q. Xu, X. H. Wang and J. N. Shen, “Hydrothermal Synthesis of In2O3 for Detecting H2S,” Sensors and Actuators B, Vol. 115, No. 2, 2006, pp. 642-646. doi:10.1016/j.snb.2005.10.038
[7] Y. L. Liu, H. Wang, Y. Yang, Z. M. Liu, H. F. Yang, G. L. Shen and R. Q. Yu, “Hydrogen Sulphide Sensing Properties of NiFeO4 Nanopowder Doped with Noble Metal,” Sensors and Actuators B, Vol. 102, No. 1, 2004, pp. 148- 154. doi:10.1016/j.snb.2004.04.014
[8] W. Yan, L. Sun, M. Lui and W. Li, “Study of Sensing Characteristics of Rare Earth Pervoskites for Alcohol,” Acta Scientiarium Naturalium Universitaties Jilinesis, Vol. 2, 1991, pp. 52-56.
[9] L. Kong and Y. Shen, “Gas Sensing Property of and Mechanism of CaxLa1-xFeO3 Ceramics,” Sensors and Actuators B, Vol. 30, No. 1, 1996, pp. 217-221. doi:10.1016/0925-4005(96)80052-9
[10] W. H. Tao and C. H. Tasi, “H2S Sensing Properties of Noble Metal Doped WO3 Thin Film Sensor Fabricated by Micromachining,” Sensors and Actuators B, Vol. 81, No. 2-3, 2002, pp. 237-247. doi:10.1016/S0925-4005(01)00958-3
[11] J. Q. Xu, X. H. Wang and J. N. Shen, “Hydrothermal Synthesis of In2O3 for Detecting H2S,” Sensors and Actuators B, Vol. 115, No. 2, 2006, pp. 642-646. doi:10.1016/j.snb.2005.10.038
[12] C. H. Wang, X. F. Chu and M. M. Wu, “Detection of H2S Down to ppb Levels at Room Temperature Using Sensors Based on ZnO Nanorods,” Sensors and Actuators B, Vol. 113, No. 1, 2006, pp. 320-323. doi:10.1016/j.snb.2005.03.011
[13] Y. L. Liu, H. Wang, Y. Yang, Z. M. Liu, H. F. Yang, G. L. Shen and R. Q. Yu, “Hydrogen Sulfide Sensing Properties of NiFeO4 Nanopowder Doped with Noble Metal,” Sensors and Actuators B, Vol. 102, No. 1, 2004, pp. 155-161. doi:10.1016/j.snb.2004.04.014
[14] X. F. Zhu, Q. Zhong, X. J. Zhao and H. Yan, “Synthesis and Performance of Y-Doped La0.7Sr0.3CrO3 as A Potential Anode Material for Solid Oxygen Fuel Cells,” Applied Surface Science, Vol. 257, No. 6, 2011, pp. 1967- 1971. doi:10.1016/j.apsusc.2010.09.036
[15] A. Martinelli, M. Ferretti and M. R. Cimberle, “The Crystal & Magnetic Structure of Ti-Substituted LaCrO3,” Materials Research Bulletin, Vol. 46, No. 2, 2011, pp. 190- 193. doi:10.1016/j.materresbull.2010.11.016
[16] X. Ding, Y. Liu, L. Gao and L. Guo, “Synthesis and Characterization of Doped LaCrO3 Perovskite Prepared by EDTA-Citrate Complexing Method,” Journal of Alloys and Compounds, Vol. 458, No. 1-2, 2008, pp. 346- 350. doi:10.1016/j.jallcom.2007.03.110
[17] B. D. Cullity, “Elements of X-Ray Diffraction,” 2nd Edition, Addison Wesley, New York, 1978, pp. 155-165.
[18] T. G. Nenov and S. P. Yordanov, “Ceramic Sensors, Technology and Applications,” Technomic Publishers, Lanscaster, 1996, pp. 138-144.
[19] V. E. Henrich and P. A. Cox, “The Surface Science of Metal Oxides,” Cambridge University Press, Cambridge, 1994, pp. 257-264.
[20] X. Liu, B. Cheng, J. F. Hu, H. W. Qin and M. H. Jiang, “Preparation, Structure, Resistance and Methane-Gas Sensing Properties of Nominal La1-xMgxFeO3,” Sensors and Actuators B, Vol. 133, No. 1, 2008, pp. 340-344. doi:10.1016/j.snb.2008.02.033

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.