A Time Series of Prehistoric Mitochondrial DNA Reveals Western European Genetic Diversity Was Largely Established by the Bronze Age
François-Xavier Ricaut, Murray P. Cox, Marie Lacan, Christine Keyser, Francis Duranthon, Bertrand Ludes, Jean Guilaine, Eric Crubézy
Centre de Recherche sur la Préhistoire et la Protohistoire de la Méditerranée, école des Hautes Etudes en Sciences Sociales, Toulouse, France.
Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand.
Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique, Université de Toulouse (Paul Sabatier), Toulouse, France.
Laboratoire d’Anthropologie Moléculaire, Centre National de la Recherche Scientifique, Institute of Legal Medicine, University of Strasbourg, Strasbourg, France.
DOI: 10.4236/aa.2012.21002   PDF    HTML     7,027 Downloads   17,792 Views   Citations

Abstract

A major unanswered question concerns the roles of continuity versus change in prehistoric Europe. For the first time, genetic samples of reasonable size taken at multiple time points are revealing piecemeal snapshots of European prehistory at different dates and places across the continent. Here, we pull these disparate datasets together to illustrate how human genetic variation has changed spatially and temporally in Europe from the Mesolithic through to the present day. Mitochondrial DNA (mtDNA) haplogroups were determined for 532 European individuals from four major eras: the Mesolithic, Neolithic, Chalcolithic (late Neolithic/early Bronze Age transition) and Modern periods. The Mesolithic was characterized by low mtDNA diversity. These initial European settler haplogroups declined rapidly in the Neolithic, as farmers from the east introduced a new suite of mtDNA lineages into Western Europe. For the first time, we show that the Chalcolithic was also a time of substantial genetic change in Europe. However, rather than the arrival of new mtDNA lineages, this period was characterized by major fluctuations in the frequencies of existing haplogroups. Besides the expansion of haplogroup H, there were few major changes in mtDNA diversity from the Chalcolithic to modern times, thus suggesting that the basic profile of mod- ern western European mtDNA diversity was largely established by the Bronze Age.

Share and Cite:

Ricaut, F. , Cox, M. , Lacan, M. , Keyser, C. , Duranthon, F. , Ludes, B. , Guilaine, J. & Crubézy, E. (2012). A Time Series of Prehistoric Mitochondrial DNA Reveals Western European Genetic Diversity Was Largely Established by the Bronze Age. Advances in Anthropology, 2, 14-23. doi: 10.4236/aa.2012.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ammerman, A. J., & Cavalli-Sforza, L. L. (1984). The neolithic transition and the genetics of populations in Europe. Princeton, NJ: Prin- ceton University Press.
[2] Bailey, G., & Spikins, P. (2008). Mesolithic Europe. Cambridge: Cambridge University Press.
[3] Balaresque, P., Bowden, G. R., Adams, S. M., Leung, H. Y., King, T.E., Rosser, Z. H., Goodwin, J., Moisan, J. P., Richard, C., Millward, A., Demaine, A. G., Barbujani, G., Previdere, C., Wilson, I. J., Tyler- Smith, C., & Jobling, M. A. (2010). A predominantly Neolithic origin for European paternal lineages. PLoS Biology, 8, e1000285. doi:10.1371/journal.pbio.1000285
[4] Bar-Yosef, O. (2004). East to west: Agricultural origins and dispersal into Europe. Current Anthropology, 45, S1-S3. doi:10.1086/423970
[5] doi:10.1086/423970
[6] Belle, E. M., Landry, P. A., & Barbujani, G. (2006). Origins and evolution of the Europeans’ genome: Evidence from multiple microsatellite loci. Proceedings of the Royal Society B, 273, 1595-1602. doi:10.1098/rspb.2006.3494
[7] Bellwood, R., & Renfrew, C. (2002). Examining the farming/language dispersal hypothesis. Cambridge: McDonald Institute for Archaeological Research.
[8] Bramanti, B., Thomas, M. G., Haak, W., Unterlaender, M., Jores, P., Tambets, K., Antanaitis-Jacobs, I., Haidle, M. N., Jankauskas, R., Kind, C. J., Lueth, F., Terberger, T., Hiller, J., Matsumura, S., & Forster, P. (2009). Genetic discontinuity between local hunter-gath- erers and central Europe’s first farmers. Science, 326, 137-140. doi:10.1126/science.1176869
[9] Bocquet-Appel, J. P., Naji, S., Vander Linden, M., & Kozlowski, J. K. (2009). Detection of diffusion and contact zones of early farming in Europe from the space-time distribution of 14C dates. Journal of Archaeological Science, 36, 807-820. doi:10.1016/j.jas.2008.11.004
[10] Burger, J., Kirchner, M., Bramanti, B., Haak, W., & Thomas, M. G. (2007). Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proceedings of the National Academy of Sciences USA, 104, 3736-3741. doi:10.1073/pnas.0607187104
[11] Cavalli-Sforza, L. L., Menozzi, P., & Piazza, A. (1994). The history and geography of human genes. Princeton, NJ: Princeton University Press.
[12] Chandler, H., Sykes, B., & Zilh?o, J. (2005). Using ancient DNA to examine genetic continuity at the Mesolithic-Neolithic transition in Portugal. In P. Arias, R. Ontanon, & A. Garcia-Monco (eds.), Actas del III Congreso del Neolitico en la Peninsula Iberica, 781-786.
[13] Chikhi, L., Destro-Bisol, G., Bertorelle, G., Pascali, V, & Barbujani, G. (1998). Clines of nuclear DNA markers suggest a largely Neolithic ancestry of the European gene pool. Proceedings of the National Academy of Sciences USA, 95, 9053-9058. doi:10.1073/pnas.95.15.9053
[14] Crubézy, E., Bruzek, J., & Guilaine, J. (2002). The transition to agriculture in Europe: An anthropobiological perspective. Biennial Book of the European Anthropological Association, 2, 93-110.
[15] Deguilloux, M. F., Soler, L., Pemonge, M. H., Scarre, C., Joussaume, R., & Laporte, L. (2011). News from the west: Ancient DNA from a French megalithic burial chamber. American Journal of Physical Anthropology, 144, 108-118. doi:10.1002/ajpa.21376
[16] Di Benedetto, G., Nasidze, I.S., Stenico, M., Nigro, L., Krings, M., Lanzinger, M., Vigilant, L., Stoneking, M., P??bo, S., & Barbujani, G. (2000). Mitochondrial DNA sequences in prehistoric human remains from the Alps. European Journal of Human Genetics, 8, 669- 677. doi:10.1038/sj.ejhg.5200514
[17] Dubut, V., Chollet, L., Murail, P., Cartault, F., Béraud-Colomb, E., Serre, M., & Mogentale-Profizi, N. (2004). MtDNA polymorphisms in five French groups: Importance of regional sampling. European Journal of Human Genetics, 12, 293-300. doi:10.1038/sj.ejhg.5201145
[18] Ermini, L., Olivieri, C., Rizzi, E., Corti, G., Bonnal, R., Soares, P., Luciani, S., Marota, I., De Bellis, G., Richards, M.B., & Rollo, F. (2008). The complete mitochondrial genome sequence of the Tyrolean Iceman. Current Biology, 18, 1687-1693. doi:10.1016/j.cub.2008.09.028
[19] Fernández Domínguez, E. (2005). Polimorfismos de DNA mitocondrial en poblaciones antiguas de la cuenca mediterránea. Ph.D. Thesis, Barcelona: University of Barcelona.
[20] Gronenborn, D. (1999). A variation on the basic theme: The transition to farming in southern central Europe. Journal of World Prehistory, 2, 123-210. doi:10.1023/A:1022374312372
[21] Guilaine, J. (1997). Résumé des Cours et travaux 1996-1997. Paris: Collège de France.
[22] Guilaine, J. (2003). De la Vague à la tombe. la conquête néolithique de la méditerranée (8000-2000 av. JC). Paris: Seuil Press.
[23] Guilaine, J., & Manen, C. (2007). From Mesolithic to early Neolithic in the western Mediterranean. In A. Whittle, & V. Cummings (eds.), Going over: The mesolithic-neolithic transition in north-west Europe (pp. 21-51). London: Proceedings of the British Academy.
[24] Guilaine, J., Tusa, S., & Veneroso, P. (2011). La Sicile et l’Europe Campaniforme. Toulouse: Archives d’Ecologie Prehistorique.
[25] Haak, W. (2006). Populationsgenetik der ersten Bauern Mitteleuropas. Eine aDNA-Studie an neolithischem Skelettmaterial. Ph.D. Thesis, Mainz: University of Mainz.
[26] Haak, W., Balanovsky, O., Sanchez, J. J., Koshel, S., Zaporozhchenko, V., Adler, C. J., Der Sarkissian, C. S., Brandt, G., Schwarz, C., Nicklisch, N., Dresely, V., Fritsch, B., Balanovska, E., Villems, R., Meller, H., Alt, K. W., Cooper, A., & the Genographic Consortium. (2010). Ancient DNA from European early Neolithic farmers reveals their near eastern affinities. PLoS Biology, 9, e1000536. doi:10.1371/journal.pbio.1000536
[27] Haak, W., Brandt, G., de Jong, H. N., Meyer, C., Ganslmeier, R., Heyd, V., Hawkesworth, C., Pike, A. W., Meller, H., & Alt, K. W. (2008). Ancient DNA, strontium isotopes, and osteological analysis shed light on social and kinship organization of the Later Stone Age. Proceedings of the National Academy of Sciences USA, 105, 18226- 18231. doi:10.1073/pnas.0807592105
[28] Haak, W., Forster, P., Bramanti, B., Matsumura, S., Brandt, G., Tanzer, M., Villems, R., Renfrew, C., Gronenborn, D., Alt, K. W., & Burger, J. (2005). Ancient DNA from the first European farmers in 7500- year-old Neolithic sites. Science, 310, 1016-1018.
[29] Itan, Y., Powell, A., Beaumont, M. A., Burger, J., & Thomas, M. G. (2009). The origins of lactase persistence in Europe. PLoS Computational Biology, 5, e1000491. doi:10.1371/journal.pcbi.1000491
[30] Izagirre, N., & de la Rúa, C. (1999). Absence of mtDNA haplogroup V in ancient Basques, American Journal of Human Genetics, 65, 199-207. doi:10.1086/302442
[31] Lacan, M., Keyser, C., Ricaut, F. X., Brucato, N., Duranthon, F., Guilaine, J., Crubézy, E., & Ludes, B. (2011). Ancient DNA revealed male diffusion through the Neolithic Mediterranean route. Proceedings of the National Academy of Sciences USA, 108, 9788-9791. doi:10.1073/pnas.1100723108
[32] Malmstr?m, H., Gilbert, M. T. P., Thomas, M. G., Branstr?m, M., Stora, J., Molnar, P., Andersen, P. K., Bendixen, C., Holmlund, G., G?therstr?m, A., Willerslev, E. (2009). Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians. Current Biology, 19, 1758-1762. doi:10.1016/j.cub.2009.09.017
[33] Malyarchuk, B., Derenko, M., Grzybowski, T., Perkova, M., Rogalla, U., Vanecek, T., & Tsybovsky, I. (2010). The peopling of Europe from the mitochondrial haplogroup U5 perspective. PLoS ONE, 5, e10285. doi:10.1371/journal.pone.0010285
[34] Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A., King, K. S., Bergmann, S., Nelson, M. R., Stephens, M., & Bustamante, C. D. (2008). Genes mirror geography within Europe. Nature, 456, 98-101. doi:10.1038/nature07331
[35] Palanichamy, M. G., Zhang, C. L., Mitra, B., Malyarchuk, B., Derenko, M., Chaudhuri, T. K., & Zhang, Y. P. (2010). Mitochondrial haplogroup N1a phylogeography, with implication to the origin of Euro- pean farmers. BMC Evolutionary Biology, 10, 304. doi:10.1186/1471-2148-10-304
[36] Pinhasi, R., Fort, J., & Ammerman, A. J. (2005). Tracing the origin and spread of agriculture in Europe. PLoS Biology, 3, e410. doi:10.1371/journal.pbio.0030410
[37] Pinhasi, R., & von Cramon-Taubadel, N. (2009). Craniometric data supports demic diffusion model for the spread of agriculture into Europe. PLoS ONE, 4, e6747. doi:10.1371/journal.pone.0006747
[38] Renfrew, C., & Boyle, K. (2000). Archaeogenetics: DNA and the population prehistory of Europe. Cambridge: McDonald Institute for Archaeological Research.
[39] Richards, M. (2003). The Neolithic invasion of Europe. Annual Review of Anthropology, 32, 135-162. doi:10.1146/annurev.anthro.32.061002.093207
[40] Richards, M. V., Macauley, V., Hickey, E., Vega, E., Sykes, B., Guida, V., Rengo, C., Sellitto, D., Cruciani, F., Kivisild, T., Villems, R., Thomas, M., Rychkov, S., Rychkov, O., Rychkov, Y., G?lge, M., Dimitrov, D., Hill, E., Bradley, D., Romano, V., Calì, F., Vona, G., Demaine, A., Papiha, S., Triantaphyllidis, C., Stefanescu, G., Hatina, J., Belledi, M., Di Rienzo, A., Novelletto, A., Oppenheim, A., N?rby, S., Al-Zaheri, N., Santachiara-Benerecetti, S., Scozari, R., Torroni, A., & Bandelt, H. J. (2000).
[41] Rowley-Conwy, P. (2011). Westward Ho! The spread of agriculture from Central Europe to the Atlantic. Current Anthropology, 52, S431- S451. doi:10.1086/658368
[42] Sampietro, M.L., Lao, O., Caramelli, D., Lari, M., Pou, R., Marti, M., Bertranpetit, J., Lalueza-Fox, C. (2007). Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe. Proceedings of the Royal Society B, 274, 2161-2167. doi:10.1098/rspb.2007.0465
[43] Sherratt, A. (1981). Plough and pastoralism: aspects of the secondary products revolution. In I. Hodder, G. Isaac, & N. Hammond (eds.), Pattern of the past: Studies in honour of David Clarke (pp. 261-305). Cambridge: Cambridge University Press.
[44] Soares, P., Achilli, A., Semino, O., Davies, W., Macaulay, V., Bandelt, H.-J., Torroni, A., & Richards, M. B. (2010). The archaeogenetics of Europe. Current Biology, 20, R174-R183. doi:10.1016/j.cub.2009.11.054
[45] Tetzlaff, S., Brandst?tter, A., Wegener, R., Parson, W., & Weirich, V. (2007). Mitochondrial DNA population data of HVS-I and HVS-II sequences from a northeast German sample. Forensic Science International, 172, 218-224. doi:10.1016/j.forsciint.2006.12.016
[46] Vander Linden, M. (2007). What linked the Bell Beakers in third millennium BC Europe? Antiquity, 81, 343-352.
[47] Von Cramon-Taubadel, N., & Pinhasi, R. (2011). Craniometric data support a mosaic model of demic and cultural Neolithic diffusion to outlying regions of Europe. Proceedings of the Royal Society B, 278, 2874-2880. doi:10.1098/rspb.2010.2678
[48] Whittle, A. W. R. (1996). Europe in the Neolithic: The Creation of New Worlds. Cambridge: Cambridge University Press.
[49] Whittle, A., & Cummings, V. (2007). Going over: The mesolithic-neo- lithic transition in north-west Europe. Oxford: Oxford University Press. doi:10.5871/bacad/9780197264140.001.0001
[50] Zvelebil, M. (2004) Who were we 6000 years ago? In search of prehistoric identities. In M. Jones (ed.), Traces of ancestry: Studies in honour of Colin Renfrew. Cambridge: McDonald Institute Monographs.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.