Share This Article:

Controlling the Tax Evasion Dynamics via Majority-Vote Model on Various Topologies

Abstract Full-Text HTML Download Download as PDF (Size:896KB) PP. 87-93
DOI: 10.4236/tel.2012.21017    6,153 Downloads   10,106 Views   Citations

ABSTRACT

Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on simple square lattices (LS), Honisch-Stauffer (SH), directed and undirected Bara-basi-Albert (BAD, BAU) networks. In to control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhod of the noise critical qc to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies cited above giving the same behavior regardless of dynamic or topology used here.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Lima, "Controlling the Tax Evasion Dynamics via Majority-Vote Model on Various Topologies," Theoretical Economics Letters, Vol. 2 No. 1, 2012, pp. 87-93. doi: 10.4236/tel.2012.21017.

References

[1] L. Onsager, “Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition,” Physical Review, Vol. 65, No. 3-4, 1944, pp. 117-149. doi:10.1103/PhysRev.65.117
[2] R. J. Baxter, “Exactly Solved Models in Statistical Mechanics,” Academic Press, London, 1982.
[3] E. Callen and D. Shapero, “A Theory of Social Imitation,” Physics Today, Vol. 27, No. 7, 1974, 23 Pages. doi:10.1063/1.3128690
[4] S. Galam, Y. Gefen and Y. Shapir, “Sociophysics: A Mean Behavior Model for the Process of Strike,” Journal of Mathematical Sociology, Vol. 9, 1982. doi:10.1080/0022250X.1982.9989929
[5] B. Latané, “The Psychology of Social Impact,” American Psychologist, Vol. 36, No. 4, 1981, pp. 343-356.
[6] T. M. Liggett, “Interacting Particles Systems,” Springer, New York, 1985. doi:10.1007/978-1-4613-8542-4
[7] T. C. Schelling, “Dynamic Models of Segregation,” Journal of Mathematical Sociology, Vol. 1, No. 2, 1971, pp. 143-186. doi:10.1080/0022250X.1971.9989794
[8] D. Stauffer, S. Moss de Oliveira, P. M. C. de Oliveira and J. S. Sá Martins, “Biology, Sociology, Geology by Computational Physicists,” Elsevier Amsterdam, 2006.
[9] H. F?llmer, “Random Economies with Many Interacting Agents,” Journal of Mathematical Economics, Vol. 1, 1974, p. 51. doi:10.1016/0304-4068(74)90035-4
[10] K. Bloomquist, “A Comparison of Agent-Based Models of Income Tax Evasion,” Social Science Computer Review, Vol. 24, No. 4, 2006, pp. 411-425. doi:10.1177/0894439306287021
[11] J. Andreoni, B. Erard and J. Feinstein, “Tax Compliance,” Journal of Economic Literature, Vol. 36, No. 2, 1998, pp. 818-860.
[12] L. Lederman, “Interplay between Norms and Enforcement in Tax Compliance,” Public Law Research Paper No. 50, 2003.
[13] J. Slemrod, “Cheating Ourselves: The Economics of Tax Evasion,” Journal of Economic Perspective, Vol. 21, No. 1, 2007, pp. 25-48. doi:10.1257/jep.21.1.25
[14] S. G?chter, “Moral Judgments in Social Dilemmas: How Bad is Free Riding?” Discussion Papers 2006-03 CeDEx, University of Nottingham, 2006.
[15] B. S. Frey and B. Togler, “Managing Motivation, Organization and Governance,” IEW-Working papers 286 Institute for Empirical Research in Economics, University of Zurich, 2006.
[16] G. Zaklan, F. W. S. Lima and F. Westerhoff, “Controlling Tax Evasion Fluctuations,” Physica A, Vol. 387, No. 23, 2008, pp. 5857-5861. doi:10.1016/j.physa.2008.06.036
[17] G. Grinstein, C. Jayaprakash and Y. He, “Statistical Mechanics of Probabilistic Cellular Automat,” Physical Review Letters, Vol. 55, No. 23, 1985, pp. 2527-2530. doi:10.1103/PhysRevLett.55.2527
[18] J. S. Wang and J. L. Lebowitz, “Phase Transitions and Universality in Nonequilibrium Steady States of Stochas- tic Ising Models,” Journal of Statistical Physics, Vol. 51, No. 5-6, 1988, pp. 893-906. doi:10.1007/BF01014891
[19] M. C. Marques, “Nonequilibrium Ising Model with Competing Dynamics: A MFRG Approach,” Physics Letters A, Vol. 145, No. 6-7, 1990, pp. 379-382. doi:10.1016/0375-9601(90)90954-M
[20] M. J. Oliveira, “Isotropic Majority-Vote Model on a Square Lattice,” Journal of Statistical Physics, Vol. 66, No. 1, 1992, pp. 273-281. doi:10.1007/BF01060069
[21] F. W. S. Lima, “Majority-Vote Model on (3, 4, 6, 4) and (34, 6) Archimedean Lattices,” International Journal of Modern Physics C (IJMPC), Vol. 17, No. 9, 2006, pp. 1273-1283. doi:10.1142/S0129183106009849
[22] M. A. Santos and S. J. Teixeira, “Universality Classes in Nonequilibrium Lattice Systems,” Statistical Physics, Vol. 78, 1995, p. 963. doi:10.1007/BF02183696
[23] F. W. S. Lima, U. L. Fulco and R. N. Costa Filho, “Majority-Vote Model on a Random Lattice,” Physical Review E, Vol. 71, No. 3, 2005, Article ID 036105. doi:10.1103/PhysRevE.71.036105
[24] M. E. J. Newman, S. H. Strogatz and D. J. Watts, “Random Graphs with Arbitrary Degree Distributions and Their Applications,” Physical Review E, Vol. 64, No. 2, 2001, Article ID 026118. doi:10.1103/PhysRevE.64.026118
[25] A. D. Sanchez, J. M. Lopez and M. A. Rodriguez, “Nonequilibrium Phase Transitions in Directed Small-World Networks,” Physical Review Letters, Vol. 88, No. 4, 2002, Article ID 048701. doi:10.1103/PhysRevLett.88.048701
[26] G. Palla, I. J. Farkas, P. Pollner, I. Derenyi and T. Vicsek, “Directed Network Modules,” New Journal of Physics, Vol. 9, No. 6, 2007, pp. 186-207. doi:10.1088/1367-2630/9/6/186
[27] A.-L. Barab′asi and R. Albert, “Emergence of Scaling in Random Networks,” Science, Vol. 286, No. 5439, 1999, pp. 509-512. doi:10.1126/science.286.5439.509
[28] A. Aleksiejuk, J. A. Ho lyst and D. Stauffer, “Ferromagnetic Phase Transition in Barabasi-Albert Networks,” Physica A, Vol. 310, No. 1-2, 2002, pp. 260-266. doi:10.1016/S0378-4371(02)00740-9
[29] M. A. Sumour and M. M. Shabat, “Monte Carlo Simulation of Ising. Model on Directed Barabasi-Albert Network,” International Journal of Modern Physics C, Vol. 16, No. 4, 2005, pp. 585-589. doi:10.1142/S0129183105007352
[30] M. A. Sumour and M. M. Shabat and D. Stauffer, “Absence of Ferromagnetism in Ising Model on Directed Barabasi-Albert Network,” Islamic University Journal (Gaza), Vol. 14, 2006, p. 209.
[31] P. Erd¨os and A. R′enyi, “Graphy Theory and Probability,” Canadian Journal of Mathematics, Vol. 6, 1959, p. 290.
[32] D. J. Watts and S. H. Strogatz, “Collective Dynamics of small-World Networks,” Nature, Vol. 393, 6684, 1998, pp. 440-442. doi:10.1038/30918
[33] S. Wasseman, K. Faust and B. Balob′as, “Social Networks Analysis,” Cambridge University Press, Cambridge, 1994.
[34] D. Stauffer, M. Hohnisch and S. Pittnauer, “Consensus Formation on Coevolving Networks: Groups’ Formation and Structure,” Physica A, Vol. 370, No. 2, 2006, pp. 734-740. doi:10.1016/j.physa.2006.05.033
[35] F. W. S. Lima, “Majority-Vote on Directed Barabasi- Albert Networks,” International Journal of Modern Physics C, Vol. 17, No. 9, 2006, pp. 1257-1265.
[36] F. W. S. Lima, “Ising Model Spin S=1 on Directed Barabási-Albert Networks,” International Journal of Modern Physics C, Vol. 17, 2006, p. 257.
[37] F. W. S. Lima, “Potts Model with q States on Directed Barabasi-Albert Networks,” Communications in Computational Physics, Vol. 2, 2007, pp. 522-529.
[38] F. W. S. Lima, “Simulation of Majority Rule Disturbed by Power-Law Noise on Directed And Undirected Barabási Albert Networks,” International Journal of Modern Physics C, Vol. 19, 2008, p. 1063. doi:10.1142/S0129183108012686
[39] F. P. Fernandes and F. W. S. Lima, “ Persistence in the Zero-Temperature Dynamics of the Q-states Potts Model on Undirected-Directed Barabási-Albert Networks and Erd?s-Rènyi Random Graphs,” International Journal of Modern Physics C, Vol. 19, No. 12, 2008, pp. 1777-1785. doi:10.1142/S0129183108013345
[40] F. W. S. Lima and G. Zaklan, “A Multi-Agent-Based Approach to Tax Morale,” International Journal of Modern Physics C, Vol. 19, 2008, pp. 1797-1822. doi:10.1142/S0129183108013357
[41] F. W. S. Lima, T. Hadzibeganovic and D. Stauffer, “Evolution of Ethnocentrism on Undirected and Directed Barabási Albert Networks,” Physica A, Vol. 388, No. 24, 2009, pp. 4999-5004. doi:10.1016/j.physa.2009.08.029
[42] F. W. S. Lima and D. Stauffer, “Ising Model Simulation in Directed Lattices and Networks,” Physica A, Vol. 359, 2006, pp. 423-429. doi:10.1016/j.physa.2005.05.085
[43] P. R. Campos, V. M. Oliveira and F. G. B. Moreira, “Majority-Vote Model on Small World Network,” Physical Review E, Vol. 67, No. 2, 2003, Article ID 026104.
[44] F. W. S. Lima, “Majority-Vote on Undirected Barabási- Albert Networks,” Communications in Computational Physics, Vol. 2, No. 2, 2007, pp. 358-366.
[45] E. M. S. Luz and F. W. S. Lima, “Majority-Vote on Directed Small-World Networks,” International Journal of Modern Physics C, Vol. 18, 2007, p. 1251. doi:10.1142/S0129183107011297
[46] F. W. S. Lima, A. O. Sousa and M. A. Sumuor, “Majority-Vote Model on Directed Erdos-Renyi Random Graph,” Physica A, Vol. 387-389, 2008, pp. 3503-3511. doi:10.1016/j.physa.2008.01.120
[47] S. Galam, “Sociophysics: A Review of Galam Models,” International Journal of General Systems, Vol. 17, No. 2, 1990, pp. 191-209. doi:10.1080/03081079108935145
[48] S. Galam, “Social Paradoxes of Majority Rule Voting and Renormalization Group,” Journal of Statistical Physics, Vol. 61, 1990, pp. 943-951. doi:10.1007/BF01027314
[49] L. F. C. Pereira and F. G. B. Moreira, “Majority-Vote Model on Random Graphs,” Physical Review E, Vol. 71, No. 1, 2005, Article ID 016123. doi:10.1103/PhysRevE.71.016123
[50] S. Galam, B. Chopard, A. Masselot and M. Droz, “Emergence in Multi-Agent Systems Part II: Axtell, Epstein and Young’s Revisited,” European Physical Journal B, Vol. 4, No. 4, 1998, pp. 529-531. doi:10.1007/s100510050410
[51] S. Galam, “Collective Be-liefs versus Individual Inflexibility: The Unavoidable Biases of a Public Debate,” Physica A: Statistical Mechanics and Its Applications, Vol. 390, No. 17, 2005, pp. 3036-3054.
[52] S. Gekle, L. Peliti and S. Galam, “Opinion Dynamics in a Three-Choice System,” European Physical Journal B, Vol. 45, No. 4, 2005, pp. 569-575. doi:10.1140/epjb/e2005-00215-3
[53] S. Galam, “Sociophysics: A Review of Galam Models,” International Journal of Modern Physics C, Vol. 19, No. 3, 2008, pp. 409-440. doi:10.1142/S0129183108012297
[54] R. Wintrobe and K. G¨erxhani, “Tax Evasion and Trust: A Comparative Analysis,” Proceedings of the Annual Meeting of the European Public Choice Society, 2004.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.