A New Approach for Atrazine Desorption, Extraction and Detection from a Clay-Silty Soil Sample

Abstract

This paper reports an alternative method for extraction, detection and quantification of atrazine from a clay-silty soil. Atrazine adsorption isotherm for this kind of soil fits to a Freundlich adsorption isotherm with a correlation coefficient of 0.994, sorption intensity 1/n = 0.718 and Kf = 1, with a maximum soil adsorbed atrazine concentration of 8 mg g–1. Atrazine desorption was approached using several surfactants including non-ionic (Triton X-100, Triton X-114, and Triton X-405), anionic (SDS) and cationic (CTAB), these surfactants were used at critical micellar concentration (CMC) and higher concentrations. Atrazine quantification was done by high resolution liquid chromatography coupled to spectrophotometric detection (HPLC-UV), optimized conditions correspond to a flow rate of 1.0 mL min–1, λ = 260 nm, a C18 PAH Agilent-Eclipse column with a mobile phase of CH3OH/1 × 10–3, a phosphate buffer, pH 3.2/CH3CN 55:30:15 (v/v). At these conditions it can be obtained a good chromatographic separation of atrazine and soil organic matter. Atrazine desorption was aided by surfactants at CMC conditions, it can be claimed that atrazine desorption was enhanced by surfactants since desorption, from higher to lower, goes as follows: 98.5% with Triton X-114, 98% with SDS, 89.5% with Triton X-405, 86.5% with Triton X-100; and 45% with CTAB.

Share and Cite:

R. Feria-Reyes, P. Medina-Armenta, M. Teutli-León, M. García-Jiménez and I. González, "A New Approach for Atrazine Desorption, Extraction and Detection from a Clay-Silty Soil Sample," American Journal of Analytical Chemistry, Vol. 2 No. 8A, 2011, pp. 63-68. doi: 10.4236/ajac.2011.228125.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Catalogo de Plaguicidas, “Comisión Intersecretarial para el Control del Proceso y Uso de Plaguicidas, Fertilizantes y Sus-tancias Toxicas,” CICOPLAFEST, México, 2004, www.cofepris.gob.mx.
[2] S. Cohen, S. Creager, R. Carsel and C. Enfield, “Potential Pesticide Contamination of Ground Water from Agriculture Uses in Treatment and Disposal of Pesticide Waste,” Ameican Chemical Society, Washington D.C., 1984, pp. 297-325.
[3] L. L. Mc-Cormick and A. E. Hiltbold, “Microbiological Decomposition of Atrazine and Diuron in Soil,” Weeds, Vol. 14, No. 1-2, 1966, pp. 77-82. doi:10.2307/4041129
[4] D. E. Armstrong, G. Chesters and R. F. Harris, “Atrazine Hydrolysis in Soil,” Soil Science Society of America, Vol. 31, 1967, pp. 61-66. doi:10.2136/sssaj1967.03615995003100010019x
[5] D. D. Kaufman and P. C. Kearney, “Microbial Degradation of S-triazine Herbicides Residues,” Reviews, Vol. 32, No. 2, 1970, pp. 235-266.
[6] R. Frank and R. G. Sirons, “Dissipation of Atrazine Residues from Soil,” Bulletin of Environmental Con-tamination and Toxicology, Vol. 34, 1985, pp. 541-548. doi:10.1007/BF01609773
[7] P. Howard, “Handbook of En-vironmental Fate and Ex- posure Data for Organic Chemicals,” Pesticides, Lewis Publishers, Chelsea, Vol. 3, 1991, pp. 345-360.
[8] D. R. Nair, J. G Burken, L. A. Licht and J. L. Schnoor, “Mineralization and Uptake of Triazine Pesticide in Soil-plant Systems,” Journal Environmental Engineering, Vol. 119, No. 5, 1993, pp. 842-854. doi:10.1061/(ASCE)0733-9372(1993)119:5(842)
[9] J. W. Munch, USEPA Method 508.1, “Determination of Chlorinated Pesticides Herbicides and Organ Halides by Liquid-Solid Ex-traction and Electron Capture Gas Chromatography,” 1995. www.caslab.com/EPA-Methods/pdf/508_1.pdf
[10] N. C. Van de Marbel, J. J. Hageman and U. A. Th. Brinkman, “Mem-brane-Based Sample Preparation for Chromatography,” Journal of Chromatography, Vol. 634, 1993, pp.1-29. doi:10.1016/0021-9673(93)80308-U
[11] M. E. Fernández Laespada, J. L. Pérez Pavón and B. Moreno Cordero, “Conti-nuous Membrane Extraction Co- upled with Chromatographic Analysis for the Determination of Phenols in Fuels,” Journal Chromatography, Vol. 823, No. 1-2, 1998, pp. 537-548. doi:10.1016/S0021-9673(98)00297-0
[12] R. Cara-bias-Martínez, E. Rodríguez-Gonzalo, P. H. Paniagua-Marcos and J. Hernández-Méndez, “Analysis of Pesticide Pesidues in Matrices with High Lipid Contents by Membrane Separation Coupled On-Line to a High- Performance Liquid Chromato-graphy System,” Journal Chromatography A, Vol. 869, No. 1-2, 2000, pp. 427-439. doi:10.1016/S0021-9673(99)01218-2
[13] M. C. Hennion, C. Cau-Dit-Coumes and V. Pichon, “Trace Analysis of Polar Or-ganic Pollutants in Aqueous Samples Tools for the Rapid Pre-diction and Optimisation of the Solid-Phase Extraction Para-meters,” Journal of Chromatography A, Vol. 823, 1998, pp. 147-161. doi:10.1016/S0021-9673(98)00479-8
[14] E. R. Brouwer, S. Kofman and U. A. Th. Brinkman, “Selected Procedures for the Monitoring of Polar Pesticides and Related Microcontaminants in Aquatic Samples,” Journal Chromatography A, Vol. 703, 1995, pp. 167- 190. doi:10.1016/0021-9673(94)01237-9
[15] R. Carabias Martínez, E. Rodríguez Gonzalo, B. Moreno Cordero, J. L. Pérez Pavón, C. García Pinto and E. Fernández Laespada, “Surfactants Cloud Point Extraction and Preconcentration of Organic Compounds Prior to Chromatography and Capillary Electrophoresis,” Journal Chromatography A, Vol. 902, No. 1, 2000, pp. 251-265. doi:10.1016/S0021-9673(00)00837-2
[16] R. P. Frankewich and W. L. Hinze, “Optimization of Solid-Phase Microextraction Conditions for Determination of Phenols,” Analytical Chemistry, Vol. 66, 1994, pp. 160-167. doi:10.1021/ac00073a027
[17] G. Stangl, R. Niessner and J. Albaiges, “Micellar Extraction—a New Step for Enrichment in the Analysis of Na- propamide,” International Journal Environmental Analytical Chemistry, Vol. 58, No. 1-4, 1995, pp. 15-22. doi:10.1080/03067319508033108
[18] G. J. Bouyoucos, “Di-rections for Making Mechanical Analysis of Soils by the Hy-drometer Method,” Soil Science, Vol. 42, 1936, pp. 225-229. doi:10.1097/00010694-193609000-00007
[19] R. L. Snyder and D. L. Bish, “Quantitative Analysis,” In D. L. Bish and J. E. Post, Eds., Modern Powder Diffraction, Mineralogical Society of America Reviews in Mineralogy, Vol. 20, 1989, pp. 101-144.
[20] ASTMD-2974, “Standard Methods for Moisture, Ash, and Organic Matter of Peat and Organic Soils,” Soil and Rock (I), 2011.
[21] OECD Guidelines for the Testing of Chemicals Adsorption/Desorption, Using a Batch Equilibrium Method, 2000. www.oecd.org/dataoecd/9/11/33663321.pdf
[22] M. M., Socias Viciana, M. Fernández Pérez, M. Villafranca Sánchez, E. González Pradas and F. Flores Cé- spedes, “Sorption and Leaching of Atrazine and MCPA in Natural and Peat Amended Calcareous Soils from Spain,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 3, 1999, pp. 1236-1241. doi:10.1021/jf980799m
[23] Y. Coquet, “Variation of Pesti-cides Sorption Isotherm in Soil at the Catchment Scale,” Pest Management Science, Vol. 58, 2002, pp. 69-78.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.