Biosorption of Malathion from Aqueous Solutions Using Herbal Leaves Powder

Abstract

Commonly available herbal leaves powder namely Achyranthes aspera (uthareni) and Phyllanthus niruri (Nela usiri) are used as biosorbents for the removal of malathion in the present investigation. The efficiency of the biosorbents is tested for the determination of malathion using batch experiments under controlled conditions as a function of pH, contact time, initial malation concentration and the optimization amount of biosorbents. The quantification of malathion in aqueous samples, before and after equilibration with biosorbents is carried out by existing spectrophotometric method based on the oxidation of malathion with excess N-bromosuccinimide (NBS) and Rhodamine B at (?max = 550 nm) is used for the unconsumed NBS. The biosorption capacities are found to be pH dependent. The maximum adsorption is noticed at pH = 6 with a contact time of 120 minutes. Biosorption equilibrium isotherms are plotted for malathion uptake capacity (Qe) against residual malathion concentration (Ce) in solution. The Qe versus Ce sorption isotherms relationship is expressed mathematically by Langmuir and Freundlich models. The removal of malathion using biosorbents Achyranthes aspera (Uthareni) and Phyllanthus niruri (Nela usiri) from spiked river water samples are found to be 94% and 96% respectively. The developed eco-friendly potential biosorbents indicate that the present method can be successfully applied for the quantitative determination and removal of malathion from real water samples.

Share and Cite:

T. Yadamari, K. Yakkala, G. Battala and R. Gurijala, "Biosorption of Malathion from Aqueous Solutions Using Herbal Leaves Powder," American Journal of Analytical Chemistry, Vol. 2 No. 8A, 2011, pp. 37-45. doi: 10.4236/ajac.2011.228122.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Hatrfk and J. Tekel, “Extraction Methodology and Chro- matography for the Determination of Residual Pesticides in Wa-ter,” Journal of Chromatography A, Vol. 733, No. 1-2, 1996, pp.217-233. doi:10.1016/0021-9673(95)00725-3
[2] J. Thomas, L. T. Ou and A. All-Agely, “DDE Remediation and Degradation,” Re-views of Environmental Contamination & Toxicology, Vol. 194, 2008, pp. 55-69. doi:10.1007/978-0-387-74816-0_3
[3] P. C. Abhilash and N. Singh, “Pesticide Use and Application: An Indian Scenario,” Journal of hazardous materials, Vol. 165, No. 1-3, 2009, pp.1-12. doi:10.1016/j.jhazmat.2008.10.061
[4] M. J. Perry, S. A. Venners, D. B. Barr and X. Xu, “Environmental Pyrethriod and Organophosphours Insecticide Exposure and Sperm Concentra-tion,” Reprod Toxicology, Vol. 23, No. 1, 2007, pp. 113-118. doi:10.1016/j.reprotox.2006.08.005
[5] M. Bhanti and A. Taneja, “Contamination of Vegetables of Different Seasons with Organophosphorous Pesticides and Related Health Risk Assessment in Northern India,” Chemosphers, Vol. 69, No. 1, 2007, pp. 63-68. doi:10.1016/j.chemosphere.2007.04.071
[6] X.-G. Chu, X. Z. Hu and H.-Y. Yao, “Determination of 266 Pesticide Residues in Apple Juice by Matrix Solid-Phase Dispersion and Gas Chromatography-Mass Selective Detection,” Journal of Chro-matography A, Vol. 1063, No. 1-2, 2005, pp. 201-210. doi:10.1016/j.chroma.2004.12.003
[7] S. B. Agrawal, “A Clinical Biochemical Neurobehavioral and Sociopsychological Study of 190 Patients Admitted to Hosopital as Result of acute Organophosphorus Poisoning,” Environmental Research, Vol. 62, No. 1, 1993, pp. 63-67. doi:10.1006/enrs.1993.1089
[8] E. Vilanova and M. A. Sogorb, “The Role of Phosphotriesters in the Detoxification of Organophosphorus Compounds,” Critical Review in Toxicology, Vol. 29, 1999, pp. 21-57. doi:10.1080/10408449991349177
[9] C. J. Wang and Z. Q. Liu, “Foliar Uptake of Pesticide—Present Status and Future Challenge,” Pesticide Biochemistry and Physiology, Vol. 87, No. 1, 2007, pp. 1-8. doi:10.1016/j.pestbp.2006.04.004
[10] K. Ohno, T. Minami, Y. Matsui and Y. magara, “Effect of Chlorine on Organophosphorus Pesticides Adsorbed on Activated Carbon: Desorption and Oxon Formation,” Water Research, Vol. 42, No. 6-7, 2008, pp. 1753-1759.
[11] B. H. Hameed, J. M. Salman and A. L. Ahmad, “Adsorption Isotherm and Kinetic Modeling of 2,4-D Pesticide on Activation Derived from Date Stones,” Journal of hazardous materials, Vol. 163, No. 1, 2009, pp. 121-126. doi:10.1016/j.jhazmat.2008.06.069
[12] D. C. Adams and L. T. Watson, “Treatability of S-Tria- zine Herbicide Metabolites Using Powdered Activated Carbon,” Journal of Environmental Engineering, Vol. 122, No. 4, 1996, pp. 327-330. doi:10.1061/(ASCE)0733-9372(1996)122:4(327)
[13] H. Jiang, C. Adams, N. Grazino, A. Roberson, M. Mac- guire and D. Khiari, “Occurance and Removal of Chloro -S-Triazine in Water Treatment Plants,” Environmental Science and Technology, Vol. 40, No. 11, 2006, pp. 3609- 3613. doi:10.1021/es052038n
[14] M. V. Lopez-Ramon, M. A. Fon-techa-Camara, M. A. Al- varez-Merino and C. Moreno-Castilla, “Removal of Diuron and Amitrol from Water under Static and Dynamic Conditions Using Activated Carbon in Form of Fiber, Cloth and Grains,” Water Research, Vol. 41, No. 13, 2007, pp. 2865-2870. doi:10.1016/j.watres.2007.02.059
[15] C. S. Castro, M. C. Guerreiro, M. Gonclaves, L. C. Oli- veira and A. S. Anastacio, “Activited Carbon/Iron Oxide Composites for the Removal of Atrizane from Aqueous Medium,” Journal of Ha-zardous Materials, Vol. 164, No. 2-3, 2009, pp. 609-614. doi:10.1016/j.jhazmat.2008.08.066
[16] M. Akhtar, S. M. Hasany, M. I. Bhanger and S. Iqbal, “Low Cost Sorbent for the Removal of Methyl Parathion Pesticide from Aqueous Solu-tion,” Chemosphere, Vol. 66, No. 10, 2007, pp.1829-1838. doi:10.1016/j.chemosphere.2006.09.006
[17] H. E. Bakouri, J. Morillo, J. Usero and A. Quassini, “Natural Attention of Pesti-cide Water Contamination by Using Ecological Adsorbents: Application for Chlorinated Pesticides Included in European Water Frame Work Directives,” Journal of Hydrology, Vol. 364, No. 1-2, 2009, pp. 175-181. doi:10.1016/j.jhydrol.2008.10.012
[18] U. Traub-Eberhard, K. P. Hensche, W. Kordel and W. Klein, “Influence of Different Field Sites on Pesticide Movement into Subsurface Drain,” Pesticide Science, Vol. 43, No. 2, 1995, pp. 121-129. doi:10.1002/ps.2780430205
[19] N. Singh, “Adsorption of Herbicides on Coal Fly Ash from Aqueous Solutions,” Journal of Hazardous Materials, Vol. 168, No. 1, 2009, pp. 233-237. doi:10.1016/j.jhazmat.2009.02.016
[20] Y. Sudhakar and A. K. Dikshit, “Adsorbent Selection for Endosulfan Removal from Waste Water Environment,” Journal of Environmental Science and Health, Part B, Vol. 34, No. 1, 1999, pp. 97-118. doi:10.1080/03601239909373186
[21] S. Boudesocque, E. Guillon, M. Aplincourt, F. Martel and S. Noael, “Use of a Low Cost Biosorbent to Remove Pesticides from Waste Water,” Journal of Environmental Quality, Vol. 37, No. 2, 2008, pp. 631-638. doi:10.2134/jeq2007.0332
[22] S. Schiewer and B. Volesky, “Ionic Strength and Electrostatic Effects in Biosorption and Protons,” Environmental Science and Technology, Vol. 31, No. 7, 1997, pp.1863- 1871. doi:10.1021/es960434n
[23] S. Chat-terjee, S. K. Das, R. Chakravarthy, A. Chakrabarti, S. Ghosh and A. K. Guha, “Interactive of Malathion, an Organophos-phorus Pesticide with Rhizopus oryzea Biomass,” Journal of Hazardous Materials, Vol. 174, No. 1-3, 2010, pp.47-53. doi:10.1016/j.jhazmat.2009.09.014
[24] V. K. Gupta, C. K. Jain, I. Ali, S. Chandra and S. Agarwal, “Removal of Lindane and Malathion from Wastewater Using Bagasse Fly Ash—A Sugar Industry Waste,” Water Research, Vol. 36, No. 10, pp. 2483-2490.
[25] K. Z. Elwakeel and A. M. Yousif, “Adsorp-tion of Ma- lathion on Thermally Treated Egg Shell Material,” Fourteenth International Water Technology Conference, Cairo, Egypt, 2010, pp. 53-65.
[26] A. Sunita, C. Parimal and R. Lalitagauri, “Biosorption of Malathion by Immobilized Cells of Bacillus sp. S14,” Chemical Speciation and Bioavailability, Vol. 22, No. 4, 2010, pp. 271-276.
[27] S. B. Mathew, A. K. Pillai and V. K. Gupta, “A Rapid Spectrophotometric Assay of Some Organophosphorus Pesticide Residues in Vegetable Samples,” Spectrochi- mica Acta Part A, Vol. 67, No. 5, 2007, pp.1430-1432. doi:10.1016/j.saa.2006.11.020
[28] A. Verma, S. Chakraborty and J. K. Basu, “Adsorption Study of Hexavalent Chromium Using Tramarind Hull- Based Adsorbents, Separation and Puri-fication Technology,” Vol. 50, No. 3, 2006, pp. 336-341. doi:10.1016/j.seppur.2005.12.007
[29] M. Aoyama, “Removal of Cr (VI) from Aqueous Solution by London Plane Leaves,” Journal of Chemical Te- chnology and Biotechnology, Vol. 78, No. 5, 2003, pp. 601-604. doi:10.1002/jctb.838

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.