Increased expression of regulatory T cell-associated markers in recent-onset diabetic children
Mikael Pihl, Mikael Chéramy, Jenny Mjösberg, Johnny Ludvigsson, Rosaura Casas
.
DOI: 10.4236/oji.2011.13007   PDF    HTML     4,038 Downloads   8,757 Views  

Abstract

CD4+CD25hi T cells are thought to be crucial for the maintenance of immunological tolerance to self antigens. In this study, we investigated the frequencies of these cells in the early stage of type 1 diabetes, as well as in a setting of possible pre-diabetic autoimmunity. Hence, the expression of FOXP3, CTLA-4, and CD27 in CD4+ CD25hi T cells was analyzed using flow cytometry in 14 patients with recent onset type 1 diabetes, in 9 at-risk individuals, and 9 healthy individuals with no known risk for type 1 diabetes. Our results show there were no differences in the frequency of CD4+CD25hi cells between groups. However, compared to controls, recent-onset type 1 diabetic patients had higher expression of FOXP3, CTLA-4, and CD27 in CD4+ CD25hi cells from peripheral blood. The median fluorescence intensity of FOXP3 was significantly higher in CD4+CD25hi cells from patients with type 1 diabetes than from controls. Furthermore, a positive correlation between the frequency of FOXP3+ cells and the median fluorescence intensity of FOXP3 was observed among patients with type 1 diabetes. These data suggest that the frequency of CD4+CD25hi FOXP3+ T cells in the periphery is not decreased but rather increased at onset of type 1 diabetes. Thus, functional deficiencies rather than reduced numbers of CD4+CD25hi cells could contribute to the development of type 1 diabetes.

Share and Cite:

Pihl, M. , Chéramy, M. , Mjösberg, J. , Ludvigsson, J. and Casas, R. (2011) Increased expression of regulatory T cell-associated markers in recent-onset diabetic children. Open Journal of Immunology, 1, 57-64. doi: 10.4236/oji.2011.13007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sakaguchi, S. and Powrie, F. (2007) Emerging challenges in regulatory T cell function and biology. Science, 317, 627-629. doi:10.1126/science.1142331
[2] Sakaguchi, S. (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6, 345-352. doi:10.1038/ni1178
[3] Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 4, 330-336. doi:10.1038/ni904
[4] Hori, S., Nomura, T. and Sakaguchi, S. (2003) Control of regulatory T cell development by the transcription factor FOXP3. Science, 299, 1057-1061. doi:10.1126/science.1079490
[5] Wang, J., Ioan-Facsinay, A., van der Voort, E.I., Huizinga, T.W. and Toes, R.E. (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. European Journal of Immunology, 37, 129-138. doi:10.1002/eji.200636435
[6] Ziegler, S.F. (2007) FOXP3: not just for regulatory T cells anymore. European Journal of Immunology, 37, 21-23. doi:10.1002/eji.200636929
[7] Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., Benard, A., Van Landeghen, M., et al. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25– T cells. Journal of Clinical Investigation, 112, 1437-1443.
[8] Allan, S.E., Crome, S.Q., Crellin, N.K., Passerini, L., Steiner, T.S., et al. (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. International Immunology, 19, 345-354. doi:10.1093/intimm/dxm014
[9] Tran, D.Q., Ramsey, H. and Shevach, E.M. (2007) Induction of FOXP3 expression in naive human CD4+ FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood, 110, 2983-2990. doi:10.1182/blood-2007-06-094656
[10] Yagi, H., Nomura, T., Nakamura, K., Yamazaki, S., Kitawaki, T., et al. (2004) Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. International Immunology, 16, 1643-1656. doi:10.1093/intimm/dxh165
[11] Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., et al. (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1, 405-413. doi:10.1016/1074-7613(94)90071-X
[12] Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., et al. (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. Journal of Experimental Medicine, 192, 303-310. doi:10.1084/jem.192.2.303
[13] Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., et al. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology, 4, 1206-1212. doi:10.1038/ni1003
[14] Munn, D.H., Sharma, M.D. and Mellor, A.L. (2004) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. Journal of Immunology, 172, 4100-4110.
[15] Ruprecht, C.R., Gattorno, M., Ferlito, F., Gregorio, A., Martini, A., et al. (2005) Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. Journal of Experimental Medicine, 201, 1793-1803. doi:10.1084/jem.20050085
[16] Koenen, H.J., Fasse, E. and Joosten, I. (2005) CD27/ CFSE-based ex vivo selection of highly suppressive alloantigen-specific human regulatory T cells. Journal of Immunology, 174, 7573-7583.
[17] Sakaguchi, S. (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annual Review of Immunology, 22, 531-562. doi:10.1146/annurev.immunol.21.120601.141122
[18] Jaeckel, E., von Boehmer, H. and Manns, M.P. (2005) Antigen-specific FOXP3-transduced T-cells can control established type 1 diabetes. Diabetes, 54, 306-310. doi:10.2337/diabetes.54.2.306
[19] Kukreja, A., Cost, G., Marker, J., Zhang, C., Sun, Z., et al. (2002) Multiple immuno-regulatory defects in type-1 diabetes. Journal of Clinical Investigation, 109, 131-140.
[20] Lindley, S., Dayan, C.M., Bishop, A., Roep, B.O., Peakman, M., et al. (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes, 54, 92-99. doi:10.2337/diabetes.54.1.92
[21] Brusko, T.M., Wasserfall, C.H., Clare-Salzler, M.J., Schatz, D.A. and Atkinson, M.A. (2005) Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes, 54, 1407-1414. doi:10.2337/diabetes.54.5.1407
[22] Tree, T.I., Roep, B.O. and Peakman, M. (2006) A mini meta-analysis of studies on CD4+CD25+ T cells in human type 1 diabetes: Report of the Immunology of Diabetes Society T Cell Workshop. Annals of the New York Academy of Sciences, 1079, 9-18. doi:10.1196/annals.1375.002
[23] Atkinson, M.A. and Eisenbarth, G.S. (2001) Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet, 358, 221-229. doi:10.1016/S0140-6736(01)05415-0
[24] Baecher-Allan, C., Brown, J.A., Freeman, G.J. and Hafler, D.A. (2001) CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology, 167, 1245-1253.
[25] Hoffmann, P., Eder, R., Kunz-Schughart, L.A., Andreesen, R. and Edinger, M. (2004) Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood, 104, 895-903. doi:10.1182/blood-2004-01-0086
[26] Putnam, A.L., Vendrame, F., Dotta, F. and Gottlieb, P.A. (2005) CD4+CD25high regulatory T cells in human autoimmune diabetes. Journal of Autoimmunity, 24, 55-62. doi:10.1016/j.jaut.2004.11.004
[27] Brusko, T., Wasserfall, C., McGrail, K., Schatz, R., Viener, H.L., et al. (2007) No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes, 56, 604-612. doi:10.2337/db06-1248
[28] Lawson, J.M., Tremble, J., Dayan, C., Beyan, H., Leslie, R.D., et al. (2008) Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clinical & Experimental Immunology, 154, 353-359. doi:10.1111/j.1365-2249.2008.03810.x
[29] Schneider, A., Rieck, M., Sanda, S., Pihoker, C., Greenbaum, C., et al. (2008) The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. Journal of Autoimmunity, 181, 7350-7355.
[30] Marwaha, A.K., Crome, S.Q., Panagiotopoulos, C., Berg, K.B., Qin, H., et al. (2010) Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. Journal of Autoimmunity, 185, 3814-3818.
[31] Read, S., Malmstrom, V. and Powrie, F. (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. Journal of Experimental Medicine, 192, 295-302. doi:10.1084/jem.192.2.295
[32] Tang, Q., Boden, E.K., Henriksen, K.J., Bour-Jordan, H., Bi, M., et al. (2004) Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur Journal of Immunology, 34, 2996-3005. doi:10.1002/eji.200425143
[33] Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., et al. (2006) FOXP3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews, 212, 8-27. doi:10.1111/j.0105-2896.2006.00427.x
[34] Venken, K., Hellings, N., Thewissen, M., Somers, V., Hensen, K., et al. (2008) Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology, 123, 79-89. doi:10.1111/j.1365-2567.2007.02690.x
[35] Duggleby, R.C., Shaw, T.N., Jarvis, L.B., Kaur, G. and Gaston, J.S. (2007) CD27 expression discriminates between regulatory and non-regulatory cells after expansion of human peripheral blood CD4+ CD25+ cells. Immunology, 121, 129-139. doi:10.1111/j.1365-2567.2006.02550.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.