Performance of Nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO) Membranes in the Removal of Fluorine and Salinity from Brackish Drinking Water

Abstract

Certain areas in Senegal have a serious problem of high fluoride and salinity in underground water because of soil properties. This water currently used for drink has a bad taste on consumption and caused diseases like dental fluorosis and skeletal fluorosis. A membrane filtration plant constructed by Pall Corporation was improved through nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO). Both NF and LPRO membranes were shown applicable for salinity and fluoride ions removal from brackish and high fluorinated drinking water in a remote community. The NF membrane has given a fluorine retention rate varying between 63.3% and 71% while the LPRO membrane allow to reach 97 to 98.9% for fluorine rejection. Highest salinity rejection rates expressed through conductivity measurements are around 46% and 97% for respectively NF and LPRO.

Share and Cite:

C. Diawara, S. Diop, M. Diallo, M. Farcy and A. Deratani, "Performance of Nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO) Membranes in the Removal of Fluorine and Salinity from Brackish Drinking Water," Journal of Water Resource and Protection, Vol. 3 No. 12, 2011, pp. 912-917. doi: 10.4236/jwarp.2011.312101.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Al-Amoudi and R. W. Lovitt, “Fouling Strategies and the Cleaning System of NF Membranes and Factors Affecting Cleaning Efficiency,” Journal of Membrane Sci- ence, Vol. 303, No. 1-2, 2007, pp. 4-28. doi:10.1016/j.memsci.2007.06.002
[2] R. Kettunen and P. Keskitalo, “Combination of Membrane Technology and Limestone Filtration to Control Drinking Water Quality,” Desalination, Vol. 131, No. 1-3, 2000, pp. 271-283. doi:10.1016/S0011-9164(00)90025-0
[3] L. Paugam, S. Taha, J. Cabon and G. Do, “Elimination of Nitrate Ions in Drinking Waters by Nanofiltration,” De- salination, Vol. 152, No. 1-3, 2002, pp. 271-274. doi:10.1016/S0011-9164(02)01073-1
[4] A. Santafe-Moros, J. M. Gozalvez-Zafrilla and J. Lora-Garc?a, “Performance of Commercial Nanofiltration Membranes in the Removal of Nitrate Ions,” Desalination, Vol. 185, No. 1-3, 2005, pp. 281-287. doi:10.1016/j.desal.2005.02.080
[5] M. Pontié, C. K. Diawara, A. Lhassani, H. Dach, M. Ru- meau, H. Buisson and J. C. Schrotter, “Water Defluoridation Processes a Review. Apllication: Nanofiltration (NF) for Future Large-Scale Pilot Plants,” Fluorine and the Environment, Vol. 2, 2006, pp. 50-80.
[6] C. K. Diawara, “Nanofiltration Process Efficiency in Wa- ter Desalination,” Separation & Purification Reviews, Vol. 37, No. 3, 2008, pp. 303-325. doi:10.1080/15422110802228770
[7] P. Sehn, “Fluoride Removal with Extra Low Energy Re- verse Osmosis Membranes: Three Years of Large Scale Field Experience in Finland,” Desalination, Vol. 223, No. 1-3, 2008, pp. 73-84. doi:10.1016/j.desal.2007.02.077
[8] L. H. MacDonald, G. Pathak, B. Singer and P. R. Jaffé, “An Integrated Approach to Address Endemic Fluorosis in Jharkhand, India,” Journal of Water Resource and Protection, Vol. 3, No. 7, 2011, pp. 457-472. doi:10.4236/jwarp.2011.37056
[9] L. D. Nghiem and S. Hawkes, “Effects of Membrane Foul- ing on the Nanofiltration of Trace Organic Contaminants,” Desalination, Vol. 236, No. 1-3, 2009, pp. 273-281. doi:10.1016/j.desal.2007.10.077
[10] S. N. Diop, M. A. Diallo, C. K. Diawara and D. Cot, “In- trinsic Properties and Performances of NF270 and XLE Membranes for Water Filtration,” Water Science & Technology: Water Supply, Vol. 11, No. 2, 2011, pp. 186-193. doi:10.2166/ws.2011.024
[11] M. M?ntt?ri, A. Pihlajamtiki and M. Nystr?m, “Compa- rison of Nanofiltration and Tight Ultrafiltration Mem- branes in the Filtration of Paper Mill Process Water,” Desalination, Vol. 149, No. 1-3, 2002, pp. 131-l36. doi:10.1016/S0011-9164(02)00744-0
[12] N. Hilal, H. Al-Zoubi, A. W. Mohammad and N. A. Dar- wish, “Nanofiltration of Highly Concentrated Salt Solu- tions up to Seawater Salinity,” Desalination, Vol. 184, No. 1-3, 2005, pp. 315-326. doi:10.1016/j.desal.2005.02.062
[13] R. Liikanen, H. Kiuru, J. Peuravuori and M. Nystr?m, “Na- nofiltration Flux, Fouling and Retention in Filtering Di- lute Model Waters,” Desalination, Vol. 175, No. 1, 2005, pp. 97-109. doi:10.1016/j.desal.2004.08.043
[14] H. Al-Zoubi and W. Omar, “Rejection of Salt Mixtures from High Saline by Nanofiltration Membranes,” Korean Journal of Chemical Engineer, Vol. 26, No. 3, 2009, pp. 799-805. doi:10.1007/s11814-009-0133-7
[15] M. M?ntt?ri, T. Pekuri and M. Nystr?m, “NF270, a New Membrane Having Promising Characteristics and Being Suitable for Treatment of Dilute Effluents from the Paper Industry,” Journal of Membrane Science, Vol. 242, No. 1-2, 2004, pp. 107-116. doi:10.1016/j.memsci.2003.08.032
[16] A. Caus, S. Vanderhaegen, L. Braekena and B. Van der Bruggen, “Integrated Nanofiltration Cascades with Low Salt Rejection for Complete Removal of Pesticides in Drinking Water Production,” Desalination, Vol. 241, No. 1-3, 2009, pp. 111-117. doi:10.1016/j.desal.2008.01.061
[17] E. M. V. Wagner, A. C. Sagle, M. M. Sharma and B. D. Freeman, “Effect of Crossflow Testing Conditions, In- cluding Feed Ph and Continuous Feed Filtration, on Com- mercial Reverse Osmosis Membrane Performance,” Jour- nal of Membrane Science, Vol. 345, No. 1-2, 2009, pp. 97-109. doi:10.1016/j.memsci.2009.08.033
[18] M. Nilsson, G. Tragardh and K. ?stergren, “Influence of Temperature and Cleaning on Aromatic and Semi-Aro- matic Polyamide Thin-Film Composite NF And RO Mem- branes,” Separation and Purification Technology, Vol. 62, No. 3, 2008, pp. 717-726. doi:10.1016/j.seppur.2008.03.014

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.