Novel Ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxy-pyrimidine-4-carboxylate Derivatives: Synthesis and Anticancer Activities

Abstract

To explore the anticancer activity of 2, 4, 5, 6-substituted pyrimidines, several ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxy-pyrimidine-4-carboxylate derivatives associated with the different substituted aromatic/aliphatic carboxamides and sulfonamides were synthesized. Different groups and position on phenyl ring attached to the carboxamide and sulfonamide of the pyrimidine led to two set of compounds. Their chemical structures were confirmed by IR,1H NMR and LC/MS analysis. Cytotoxicity of all the synthesized compounds were examined on human leukemia celllines (K562 and CEM). The preliminary results showed most of the derivatives exhibited good antitumor activity. Compound with para chloro substitution among carboxamides and compound with meta dichloro substitution among sulphonamidesexhibited significant antitumor activity with IC50 value of 14.0 μM and 15.0 μM respectively against K562cell line. For comparison among electron donating groups between carboxamides and sulfonamides, compounds with para tert-butyl substitution were chosen for further studies. Cell cycle analysis suggests that both tert-butyl substituted compounds are able to induce apoptosis.

Share and Cite:

D. Asha, C. Kavitha, S. Chandrappa, D. Prasanna, K. Vinaya, S. Raghavan and K. Rangappa, "Novel Ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxy-pyrimidine-4-carboxylate Derivatives: Synthesis and Anticancer Activities," Journal of Cancer Therapy, Vol. 1 No. 1, 2010, pp. 21-28. doi: 10.4236/jct.2010.11003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] xJ. B. Gibbs, “Mechanism-based target identification and drug discovery in cancer research,” Science, Vol. 287, pp. 1969–1973, 2000.
[2] B. A. Chabner, W. Wilson, and J. Supko, “Pharmacology and toxicity of antineoplastic drugs,” In: E. Beutler, M. A. Lichtman, B. S. Coller, T. J. Kipps, U. Seligsoh, Ed., Williams Hematology, 6th edition, McGraw Hill, New York, pp. 185, 2001.
[3] X. Fuchun, Z. Hongbing, Z. Lizhi, L. Liguang, and H. Youhong, “Synthesis and biological evaluation of novel 2,4,5-substituted pyrimidine derivatives for anticancer activity,” Bioorganic and Medicinal Chemistry Letters, Vol. 19, pp. 275–278, 2009.
[4] D. G. Monica, A. G. V. Jose, R. S. Fernando, A. M. Juan, C. Octavio, A. Antonia, A. G. Miguel, E. Antonio, and M. C. Joaquin, “Anticancer activity of (1,2,3,5-tetrahydro-4, 1-benzoxazepine-3-yl)-pyrimidines and -purines against the MCF-7 cell line: Preliminary cDNA microarray studies,” Bioorganic and Medicinal Chemistry Letters, Vol. 18, pp. 1457–1460, 2008.
[5] S. Nilantha, K. Shailaja, N. Bao, P. Azra, W. Yang, C. Gisela, T. Ben, D. John, and X. C. Sui, “Discovery of substituted 4-anilino-2-(2-pyridyl) pyrimidines as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay,” Part 1: Structure-activity relationships of the 4-anilino group, Bioorganic and Medicinal Chemistry Letters, Vol. 14, pp. 7761–7773, 2006.
[6] S. S. Bahekar and D. B. Shinde, “Synthesis and anti-inflammatory activity of some [4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid deri vatives,” Bioorganic and Medicinal Chemistry Letters, Vol. 14, pp. 1733–1736, 2004.
[7] K. Tadashi, I. Motonobu, H. Akio, K. Fumihiko, and K. Kazuo, “Pyrimidine nucleosides. 6. Synthesis and anti-cancer activities of N4-substituted 2,2'-anhydronucleosides,” Journal of Medicinal Chemistry, Vol. 17, pp. 1076–1078, 1974.
[8] S. L. Tai, H. Y. Jing, C. L. Mao, Y. S. Zh, C. C. Yung, H. P. William, I. B. George, G. Jerzy, and G. Ismail, “Synthesis and anticancer activity of various 3'-deoxy pyrimidine nucleoside analogs, and crystal structure of 1-(3-deoxy-. beta.-D-threo-pentofuranosyl) cytosine,” Journal of Medicinal Chemistry, Vol. 34, pp. 693–701, 1991.
[9] N. Ebrahim, Z. Aihua, K. Panteh, I. W. Leonard, B. Jan, D. C. Erik, and E. K. Edward, “Synthesis of 3‘- and 5‘-nitrooxy pyrimidine nucleoside nitrate esters: ‘Nitric Oxide Donor’ agents for evaluation as anticancer and antiviral agents,” Journal of Medicinal Chemistry, Vol. 46, pp. 995–1004, 2003.
[10] G. N. Pershin, L. I. Sherbakova, T. N. Zykova, and V. N. Sakolova, “Antibacterial activity of pyrimidineand pyrrolo-(3, 2-d)-pyrimidine derivatives,” Farmakol Taksikol, Vol. 35, pp. 466–471, 1972.
[11] D. J. Brown, “Pyrimidines and their benzo derivatives,” In: A. R. Katrizky, C. W. Rees Ed., Comprehensive heterocyclic chemistry, the structure, reactions, synthesis and uses of heterocyclic compounds, Pragmon Press, Oxford, pp. 57, 1984.
[12] N. I. Smetskaya, N. A. Mukhina, V. G. Granik, G. Y. Shvarts, R. D. Syubaev, and M. D.Mashkovskii, “Synthesis and study of analgesic action of pyrido [1,2-a] pyrimidine derivatives,” Pharmaceutical Chemistry Journal, Vol. 18, pp. 540–544, 1984.
[13] S. Naresh, Nishi, P. Shraddha, M. S. C. Prem, and G. Suman, “Synthesis and antileishmanial activity of novel 2,4,6-trisubstituted pyrimidines and 1,3,5-triazines,” European Journal of Medicinal Chemistry, Vol. 44, pp. 2473–2481, 2009.
[14] A. Z. Medhat, M. S. Ahmed, S. A. E. Mohamed, A. A. Yousry, and H. E. Usama, “Some reactions with Ketene dithioacetals: Part I: Synthesis of antimicrobial pyrazolo [1,5-a] pyrimidines via the reaction of ketene dithioacetals and 5-aminopyrazoles,” Il Farmaco, Vol. 56, pp. 277–283, 2001.
[15] E. T. Buurman, A. E. Blodgett, K. G. Hull, and D. Carcanague, “Pyridines and pyrimidines mediating activity against an efflux-negative strain of candida albicans through putative inhibition of lanosterol demethylase,” Antimicrob Agents Chemother, Vol. 48, pp. 313–318, 2004.
[16] P. J. Manley, A. E. Balitza, M. T. Bilodeau, K. E. Coll, G. D. Hartman, R. C. McFall, K. W. Rickert, L. D. Rodman, and K. A. Thomas, “2, 4-Disubstituted pyrimidines: A novel class of KDR kinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, Vol. 13, pp. 1673–1677, 2003.
[17] M. Anderson, J. F. Beattie, G. A. Breault, J. Breed, K. F. Byth, J. D. Culshaw, R. P. A. Ellston, S. Green, C. A. Minshull, R. A. Norman, R. A. Pauptit, J. Stanway, A. P. Thomas, and P. J. Jewsbury, “Imidazo [1,2-a] pyridines: A potent and selective class of cyclin-Dependent kinase inhibitors identified through structure-Based hybridization,” Bioorganic and Medicinal Chemistry Letters, Vol. 13, pp. 3021–3026, 2003.
[18] K. F. Byth, J. D. Culshaw, S. Green, S. E. Oakes, and A. P. Thomas, “Imidazo [1,2-a] pyridines. Part 2: SAR and optimisation of a potent and selective class of cyclin-dependent kinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, Vol. 14, pp. 2245–2248, 2004.
[19] S. Emanuel, R. H. Gruninger, A. Fuentes-Pesquera, P. J. Connolly, J. A. Seamon, S. Hazel, R. Tominovich, B. Hollister, C. Napier, M. R. D’Andrea, M. Reuman, G. Bignan, R. Tuman, D. Johnson, D. Moffatt, M. Batchelor, A. Foley, J. O’Connell, R. Allen, M. Perry, L. Jolliffe, and S. A. Middleton, “A vascular endothelial growth factor receptor-2 kinase inhibitor potentiates the activity of the conventional chemotherapeutic agents paclitaxel and doxorubicin in tumor xenograft models,” Molecular Pharmacology, Vol. 66, pp. 635, 2004.
[20] J. T. Sisko, T. J. Tucker, M. T. Bilodeau, C. A. Buser, P. A. Ciecko, K. E. Coll, C. Fernandes, J. B. Gibbs, T. J. Koester, N. Kohl, J. J. Lynch, X. Mao, D. McLoughlin, C. M. Miller-Stein, L. D. Rodman, K. W. Rickert, L. Sepp-Lorenzino, J. M. Shipman, K. A. Thomas, B. K. Wong, and G. D. Hartman, “Potent 2-[(pyrimidin-4-yl) amine}-1,3-thiazole-5-carbonitrile-based inhibitors of VEGFR-2 (KDR) kinase,” Bioorganic and Medicinal Chemistry Letters, Vol. 16, pp. 1146–1150, 2004.
[21] A. G. Waterson, K. L. Stevens, M. J. Reno, Y. M. Zhang, E. E. Boros, F. Bouvier, A. Rastagar, D. E. Uehling, S. H. Dickerson, B. Reep, O. B. McDonald, E. R. Wood, D. W. Rusnak, K. J. Alligood, and S. K. Rudolph, “Alkynyl pyrimidines as dual EGFR/ErbB2 kinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, Vol. 16, pp. 2419–2422, 2006.
[22] G. A. Breault, R. P. A. Ellston, S. Green, S. R. James, P. J. Jewsbury, C. J. Midgley, R. A. Pauptit, C. A. Minshull, J. A. Tucker, and J. E. Pease, “Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 2: Identification and optimisation of substituted 2, 4-bis anilino pyrimidines,” Bioorganic and Medicinal Chemistry Letters, Vol. 13, pp. 2961–2966, 2003.
[23] J. F. Beattie, G. A. Breault, R. P. A. Ellston, S. Green, P. J. Jewsbury, C. J. Midgley, R. T. Naven, C. A. Minshull, R. A. Pauptit, J. A. Tucker, and J. E. Pease, “Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: Identification and optimisation of substituted 4, 6-Bis anilino pyrimidines,” Bioorganic and Medicinal Chemistry Letters, Vol. 13, pp. 2955–2960, 2003.
[24] Q. Zhang, Y. Liu, F. Gao, Q. Ding, C. Cho, W. Hur, Y. Jin, T. Uno, C. A. P. Joazeiro, and N. Gray, “Discovery of EGFR selective 4,6-disubstituted pyrimidines from a combinatorial kinase-directed heterocycle library,” Journal of the American Chemical Society, Vol. 128, pp. 2182–2183, 2006.
[25] V. J. Cee, B. K. Albrecht, S. Geuns-Meyer, P. Hughes, S. Bellon, J. Bready, S. Caenepeel, S. C. Chaffee, A. Coxon, M. Emery, J. Fretland, P. Gallant, Y. Gu, B. L. Hodous, D. Hoffman, R. E. Johnson, R. Kendall, J. L. Kim, A. M. Long, D. McGowan, M. Morrison P. R. Olivieri, V. F. Patel, A. Polverino, D. Powers, P. Rose, L. Wang, and H. Zhao, “Alkynylpyrimidine amide derivatives as potent, selective, and orally active inhibitors of tie-2 kinase,” Journal of Medicinal Chemistry, Vol. 50, pp. 627–640, 2007.
[26] G. W. Rewcastle, W. A. Denny, and H. D. H. Showalter, “Synthesis of 4-(Phenylamino) pyrimidine derivatives as atp-competitive protein kinase inhibitors with potential for cancer chemotherapy,” Current Organic Chemistry, Vol. 4, pp. 679–706, 2000.
[27] A. J. Bridges, “Chemical inhibitors of protein kinases,” Chemical Reviews, Vol. 101, pp. 2541–2572, 2001.
[28] P. Traxler, E. Bold, G. Buchdunger, G. Caravatti, P. Furet, P. Manley, T. O’Reilly, J. Wood, and J. Zimmermann, “Tyrosine kinase inhibitors: From rational design to clinical trials,” Medicinal Research Reviews, Vol. 21, pp. 499–512, 2001.
[29] D. S. Prasanna, C. V. Kavitha, B. Raghava, K. Vinaya, S. R. Ranganatha, S. C. Raghavan, and K. S. Rangappa, “Synthesis and identification of a new class of (S)-2,6-diamino-4,5,6,7-tetrahydrobenzo[d]thiazole derivatives as potent antileukemic agents,” Investigational New Drugs, 2009.
[30] C. S. Ananda-Kumar, C. V. Kavitha, K. Vinaya, S. B. Benaka Prasad, N. R. Thimmegowda, S. Chandrappa, S. C. Raghavan, and K. S. Rangappa, “Synthesis and in vitro cytotoxic evaluation of novel diazaspiro bicyclo hydantoin derivatives in human leukemia cells: A SAR study,” Investigational New Drugs, Vol. 27, pp. 327–337, 2009.
[31] C. V. Kavitha, M. Nambiar, C. S. Ananda-Kumar, B. Choudhary, K. Muniyappa, K. S. Rangappa, and S. C. Raghavan, “Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells,” Biochemical Pharmacology, Vol. 77, pp. 348–363, 2009.
[32] S. Chandrappa, C. V. Kavitha, M. S. Shahabuddin, K. Vinaya, C. S. Ananda-Kumar, S. R. Ranganatha, S. C. Raghavan, and K. S. Rangappa, “Synthesis of 2-(5-((5-(4-chlorophenyl)furan-2-yl) methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells,” Bioorganic and Medicinal Chemistry, Vol. 17, pp. 2576–2584, 2009.
[33] D. Asha, Manish Malviya., S. Chandrappa, , C. T. Sadashiva, K. Vinaya, D. S. Prasanna and K. S. Rangappa, “Synthesis and characterization of substituted ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxypyrimi-dine-4-carboxylate derivatives as antioxidant agents,” Letters in Drug Design and Discovery, Vol. 6, No. 8, pp. 637–643, 2009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.